PROJECT GOALS

• Provide performance bounds in locality space using real world computational kernels
• Allow scaling of input data size and time to run according to the system capability
• Verify the results using standard error analysis
• Allow vendors and users to provide optimized code for superior performance
• Make the benchmark information continuously available to the public in order to disseminate performance tuning knowledge and record technological progress over time
• Ensure reproducibility of the results by detailed reporting of all aspects of benchmark runs

FEATURE HIGHLIGHTS OF HPCC 1.4.2 RELEASED OCTOBER 2012

• Increased sizes of scratch vectors for local FFT tests to account for runs on systems with large main memory (reported by IBM, SGI and Intel).
• Reduced vector size for local FFT tests due to larger scratch space needed.
• Added a type cast to prevent overflow of a 32-bit integer vector size in FFT data generation routine (reported by IBM).
• Fixed variable types to handle array sizes that overflow 32-bit integers in RandomAccess (reported by IBM and SGI).
• Changed time-bound code to be used by default in Global RandomAccess and allowed for it to be switched off with a compile time flag if necessary.
• Code cleanup to allow compilation without warnings of RandomAccess test.
• Changed communication code in PTRANS to avoid large message sizes that caused problems in some MPI implementations.
• Updated documentation in README.txt and README.html files.

LOCALITY SPACE OF MEMORY ACCESS IN APPLICATIONS

HPCC RESULTS’ PAGE

SUMMARY OF HPCC AWARDS

CLASS 1: Best Performance

• Best in G-HPL, EP-STREAM-Triad per system, G-RandomAccess, G-FFT
• There will be 4 winners (one in each category)

CLASS 2: Most Productivity

• One or more winners
• Judged by a panel at SC12 BOF
• Stresses elegance and performance
• Implementations in various (existing and new) languages are encouraged
• Submissions may include up to two kernels not present in HPCC
• Submission consists of: code, its description, performance numbers, and a presentation at the BOF
HPCC AWARDS CLASS 1: PERFORMANCE

HPCC BENCHMARKS

HPL
This is the widely used implementation of the Linpack TPP benchmark. It measures the sustained floating point rate of execution for solving a linear system of equations.

STREAM
A simple benchmark test that measures sustainable memory bandwidth (in GB/s) and the corresponding computation rate for four vector kernel codes.

RandomAccess
Measures the rate of integer updates to random locations in large global memory array.

PTRANS
Implements parallel matrix transpose that exercises a large volume communication pattern whereby pairs of processes communicate with each other simultaneously.

FFT
Calculates a Discrete Fourier Transform (DFT) of very large one-dimensional complex data vector.

b_eff
Effective bandwidth benchmark is a set of MPI tests that measure the latency and bandwidth of a number of simultaneous communication patterns.

DGEMMM
Measures the floating point rate of execution of double precision real matrix-matrix multiplication.

G-STREAM-Triad
- IBM Blue Gene/L LIVERMORE 2005
- Cray XT3 Quad-core OAK RIDGE 2006
- Cray XT5 Hex-core LIVERMORE 2007
- Fujitsu SPARC64 VIIIfx JAMSTEC 2008
- Fujitsu SPARC64 VIIIfx JAMSTEC 2009
- Fujitsu SPARC64 VIIIfx JAMSTEC 2010
- Fujitsu SPARC64 VIIIfx JAMSTEC 2011

G-HPL
- IBM Blue Gene/L LIVERMORE 2005
- Fujitsu SPARC64 VIIIfx JAMSTEC 2006
- Fujitsu SPARC64 VIIIfx JAMSTEC 2007
- IBM Blue Gene/P LIVERMORE 2008
- Cray XT5 Hex-core OAK RIDGE 2009
- Cray XT5 Hex-core OAK RIDGE 2010
- Fujitsu SPARC64 VIIIfx JAMSTEC 2011

G-RandomAccess
- IBM Blue Gene/L LIVERMORE 2005
- Cray XT3 Quad-core SANDIA 2006
- IBM Blue Gene/P LIVERMORE 2007
- Fujitsu SPARC64 VIIIfx JAMSTEC 2008
- Fujitsu SPARC64 VIIIfx JAMSTEC 2009
- Fujitsu SPARC64 VIIIfx JAMSTEC 2010
- Fujitsu SPARC64 VIIIfx JAMSTEC 2011

G-FFT
- Fujitsu SPARC64 VIIIfx JAMSTEC 2005
- IBM Blue Gene/L LIVERMORE 2006
- Fujitsu SPARC64 VIIIfx JAMSTEC 2007
- Fujitsu SPARC64 VIIIfx JAMSTEC 2008
- Fujitsu SPARC64 VIIIfx JAMSTEC 2009
- Fujitsu SPARC64 VIIIfx JAMSTEC 2010
- Fujitsu SPARC64 VIIIfx JAMSTEC 2011