
DPLASMA (Distributed Parallel Linear Algebra Software for 
Multicore Architectures) is the leading implementation of a 
dense linear algebra package for distributed heterogeneous 
systems. It is designed to deliver sustained performance for 
distributed systems where each node features multiple sockets of 
multicore processors, and if available, accelerators like GPUs or 
Intel Xeon Phi. DPLASMA achieves this objective through the 
state of the art PaRSEC runtime, porting the Parallel Linear 
Algebra Software for Multicore Architectures (PLASMA) 
algorithms to the distributed memory realm.

Fine-grain Composition 
of Operations

Two-sided Factorizations

Distributed Sparse Solver

More GPU kernels integration

LU+RBT
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double real, double complex, single 
real, single complex (D, Z, S, C)

Providing ScaLAPACK-compatible 
interface for matrices in F77 
column-major layout

Supporting: 
Linux, Windows, Mac OS X, UN*X 
(depends on MPI, hwloc)

USER DEFINED DATA PLACEMENT

In addition to traditional ScaLAPACK data distribution, DPLASMA provides 
interfaces for users to expose arbitrary tile distributions, and the algorithms 
transparently operate on local data, or introduce implicit communications to 
resolve dependencies, removing the burden of initial data re-shuffle, and 
providing to the user a novel approach to address load balance.

FUNCTIONALITY COVERAGE

Linear Systems of Equations

Least Squares

Symmetric Eigenvalue Problem

Level 3 Tile BLAS

Cholesky, LU (inc. pivoting, PP), LDL (prototype)

QR & LQ

Reduction to Band (prototype)

GEMM, TRSM, TRMM, HEMM/SYMM, 
HERK/SYRK, HER2K/SYR2K
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Distributed Hybrid DPOTRF 
Problem Scaling on Keeneland

64 nodes (1024 cores, 192 M2090 GPUs, Infiniband 20G)

EXTRAPOLATED PRACTICAL PEAK 64X DGEMM PEAK ON 1 NODE

EXTRAPOLATED IDEAL SCALING 64X PARSEC DPOTRF PEAK ON 1 NODE
PaRSEC DPOTRF on 1 node: 1187Gflop/s MAGMA DPOTRF on 1 node: 1155Gflop/s
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ENERGY EFFICIENCY
Solving Linear Least Square Problem (DGEQRF)

System G Virginia Tech, 32-node, 256-core, Intel Xeon 2.8GHz, IB20G

PaRSEC DPOTRF (on 64 nodes, 16 cores+3GPUs/node)

PaRSEC DPOTRF (on 64 nodes, 16 cores+2GPUs/node)

PaRSEC DPOTRF (on 64 nodes, 16 cores+1GPU/node)
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DPOTRF performance weak scaling
Cray XT5 (Kraken)

FIND OUT MORE AT http://icl.cs.utk.edu/dplasma
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Block Size (NB)

1 Nodes (8 cores)
4 Nodes (32 cores)

81 Nodes (648 cores)

FEATURES Supports Distributed Heterogeneous Platforms

Sustained Performance

NUMA & Cache Aware Scheduling

State-of-the-art Algorithms

Capacity Level Scalability

Performance Portability

Implicit Communication

Communication Overlapping
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PaRSEC is a generic framework for architecture aware scheduling and management of micro-tasks on distributed many-core 

heterogeneous architectures. Applications we consider can be expressed as a Direct Acyclic Graph of tasks with labeled edges 

designating data dependencies. DAGs are represented in a compact problem-size independent format that can be queried on-demand 

to discover data dependencies in a totally distributed fashion. PaRSEC assigns computation threads to the cores, overlaps 

communications and computations and uses a dynamic, fully-distributed scheduler based on architectural features such as NUMA 

nodes and algorithmic features such as data reuse.

Input serial codes are converted automatically by the PaRSEC compiler 
into the task Dataflow representation which can also be edited by the 
programmer. The Dataflow compiler generates the stubs that, along with 
the Data distribution provided by the programmer via Domain Specific 
Extensions, the Application code & Codelets, the Runtime and relevant 
libraries are linked by the system compiler to generate the executable that 
will run on a heterogeneous distributed memory supercomputer.

PaRSEC uses a symbolic, problem size independent representation to 
express the Directed Acyclic Graph (DAG) of the Dataflow of a program. As 
a result, at runtime, successors and predecessors of any given task can be 
evaluated independently, without exploring portions of the DAG pertaining 
to tasks localized on other nodes. Furthermore, the whole DAG is never 
unfolded, and only the set of locally active tasks resides in the memory at 
any given time.

AUTOTUNING (MULTI-LEVEL)

PaRSEC TOOLCHAIN EFFICIENT DATA FLOW
REPRESENTATION

Only active tasks are
represented in memory

at any given moment


