
DPLASMA (Distributed Parallel Linear Algebra Software for
Multicore Architectures) is the leading implementation of a
dense linear algebra package for distributed heterogeneous
systems. It is designed to deliver sustained performance for
distributed systems where each node features multiple sockets of
multicore processors, and if available, accelerators like GPUs or
Intel Xeon Phi. DPLASMA achieves this objective through the
state of the art PaRSEC runtime, porting the Parallel Linear
Algebra Software for Multicore Architectures (PLASMA)
algorithms to the distributed memory realm.

Fine-grain Composition
of Operations

Two-sided Factorizations

Distributed Sparse Solver

More GPU kernels integration

LU+RBT

FUTURE PLANS

F
E

A
T

U
R

E
S Covering four precisions:

double real, double complex, single
real, single complex (D, Z, S, C)

Providing ScaLAPACK-compatible
interface for matrices in F77
column-major layout

Supporting:
Linux, Windows, Mac OS X, UN*X
(depends on MPI, hwloc)

USER DEFINED DATA PLACEMENT

In addition to traditional ScaLAPACK data distribution, DPLASMA provides
interfaces for users to expose arbitrary tile distributions, and the algorithms
transparently operate on local data, or introduce implicit communications to
resolve dependencies, removing the burden of initial data re-shuffle, and
providing to the user a novel approach to address load balance.

FUNCTIONALITY COVERAGE

Linear Systems of Equations

Least Squares

Symmetric Eigenvalue Problem

Level 3 Tile BLAS

Cholesky, LU (inc. pivoting, PP), LDL (prototype)

QR & LQ

Reduction to Band (prototype)

GEMM, TRSM, TRMM, HEMM/SYMM,
HERK/SYRK, HER2K/SYR2K

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

100k108 432 768 1200 3072 150k 200k 250k 300k

P
E

R
F
O

R
M

A
N

C
E

 (
T

F
L
O

P
/S

)

MATRIX SIZE (N)

Distributed Hybrid DPOTRF
Problem Scaling on Keeneland

64 nodes (1024 cores, 192 M2090 GPUs, Infiniband 20G)

EXTRAPOLATED PRACTICAL PEAK 64X DGEMM PEAK ON 1 NODE

EXTRAPOLATED IDEAL SCALING 64X PARSEC DPOTRF PEAK ON 1 NODE
PaRSEC DPOTRF on 1 node: 1187Gflop/s MAGMA DPOTRF on 1 node: 1155Gflop/s

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

 0 20 40 60 80 100

P
O

W
E

R
 (

W
A

T
T

S
)

TIME (SECONDS)

SYSTEM

CPU
MEMORY

NETWORK

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

 0 20 40 60 80 100

P
O

W
E

R
 (

W
A

T
T

S
)

TIME (SECONDS)

SYSTEM

CPU
MEMORY

NETWORK

ENERGY EFFICIENCY
Solving Linear Least Square Problem (DGEQRF)

System G Virginia Tech, 32-node, 256-core, Intel Xeon 2.8GHz, IB20G

PaRSEC DPOTRF (on 64 nodes, 16 cores+3GPUs/node)

PaRSEC DPOTRF (on 64 nodes, 16 cores+2GPUs/node)

PaRSEC DPOTRF (on 64 nodes, 16 cores+1GPU/node)

 0

 5

 10

 15

 20

 25

 30

P
E

R
F
O

R
M

A
N

C
E

 (
T

F
L
O

P
/S

)

NUMBER OF CORES

DPOTRF performance weak scaling
Cray XT5 (Kraken)

FIND OUT MORE AT http://icl.cs.utk.edu/dplasma

IN COLLABORATION WITH WITH SUPPORT FROM SPONSORED BY

PRACTICAL P
EAK (G

EMM)

PaRSEC

libSCI Scalapack

National Science Foundation

Serial
Code

PaRSEC
compiler

����!��
representation

����!��
compiler

Parallel
tasks stubs

Runtime

Programmer

System
compiler

Additional
librariesMPI

CUDA
pthreads

PLASMA
 MAGMA

Application code &
Codelets

PaRSEC Toolchain

Domain
	��
�

Extensions

Data
distribution

Supercomputer

SPONSORED BYIN COLLABORATION WITH WITH SUPPORT FROM

http://icl.utk.edu/parsec

FIND OUT MORE AT

 50

 60

 70

 80

 90

 100

 120
 160

 200
 260

 300
 340

 460
 640

 1000

%
 e

ffi
ci

en
cy

Block Size (NB)

1 Nodes (8 cores)
4 Nodes (32 cores)

81 Nodes (648 cores)

FEATURES Supports Distributed Heterogeneous Platforms

Sustained Performance

NUMA & Cache Aware Scheduling

State-of-the-art Algorithms

Capacity Level Scalability

Performance Portability

Implicit Communication

Communication Overlapping

Node0

Node1

Node2

Node3

PO

GE

TR

SYTR TR

PO GE GE

TR TR

SYSY GE

PO

TR

SY

PO

SY SY

PAST

ACTIVE

FUTURE

PaRSEC is a generic framework for architecture aware scheduling and management of micro-tasks on distributed many-core

heterogeneous architectures. Applications we consider can be expressed as a Direct Acyclic Graph of tasks with labeled edges

designating data dependencies. DAGs are represented in a compact problem-size independent format that can be queried on-demand

to discover data dependencies in a totally distributed fashion. PaRSEC assigns computation threads to the cores, overlaps

communications and computations and uses a dynamic, fully-distributed scheduler based on architectural features such as NUMA

nodes and algorithmic features such as data reuse.

Input serial codes are converted automatically by the PaRSEC compiler
into the task Dataflow representation which can also be edited by the
programmer. The Dataflow compiler generates the stubs that, along with
the Data distribution provided by the programmer via Domain Specific
Extensions, the Application code & Codelets, the Runtime and relevant
libraries are linked by the system compiler to generate the executable that
will run on a heterogeneous distributed memory supercomputer.

PaRSEC uses a symbolic, problem size independent representation to
express the Directed Acyclic Graph (DAG) of the Dataflow of a program. As
a result, at runtime, successors and predecessors of any given task can be
evaluated independently, without exploring portions of the DAG pertaining
to tasks localized on other nodes. Furthermore, the whole DAG is never
unfolded, and only the set of locally active tasks resides in the memory at
any given time.

AUTOTUNING (MULTI-LEVEL)

PaRSEC TOOLCHAIN EFFICIENT DATA FLOW
REPRESENTATION

Only active tasks are
represented in memory

at any given moment

