Users’ Guide to GridSolve
Version 0.15

Jack Dongarra, Keith Seymour, Asim YarKhan

Innovative Computing Laboratory
Department of Computer Science
University of Tennessee

May 2006

Users’ Guide to GridSolve: (http://icl.cs.utk.edu/gridsolve/)
by Sudesh Agrawal, Jack Dongarra, Kiran Sagi, Keith Seymsim YarKhan

Copyright 1995-2006 by The GridSolve Project, Innovativer@uting Laboratory, Department
of Computer Science, University of Tennessee

Legal Restrictions

Allowed Usage Users may use GridSolve in any capacity they wish. We onkythat proper
credit and citations be used when the GridSolve system rggldeveraged in other software sys-
tems.

Redistribution: Users are allowed to freely distribute the GridSolve syste unmodified form.
At no time is a user to accept monetary or other compensaioretlistributing parts or all of the
GridSolve system.

Modification of Code: Users are free to make whatever changes they wish to th&Qviel system
to suit their personal needs.We mandate, however, that iauly highlight which portions are of
the original system and which are a result of the third-parbdification.

Warranty Disclaimer: USER ACKNOWLEDGES AND AGREES THAT: (A) NEITHER THE
GridSolve TEAM NOR THE BOARD OF REGENTS OF THE UNIVERSITY OFENNESSEE
SYSTEM (REGENTS) MAKE ANY REPRESENTATIONS OR WARRANTIES WATSOEVER
ABOUT THE SUITABILITY OF GridSolve FOR ANY PURPOSE,; (B) Grblve IS PROVIDED
ONAN“AS IS, WITH ALL DEFECTS” BASISWITHOUT EXPRESS OR IMPIEHDWARRANTIES,
INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ARTICULAR
PURPOSE OR NONINFRINGEMENT; (C) NEITHER THE GridSolve TEANOR THE RE-
GENTS SHALL BE LIABLE FOR ANY DAMAGE OR LOSS OF ANY KIND ARISING OUT
OF OR RESULTING FROM USER’S POSSESSION OR USE OF GridSoNE(UDING DATA
LOSS OR CORRUPTION), REGARDLESS OF WHETHER SUCH LIABILITS IBASED IN
TORT, CONTRACT, OR OTHERWISE; AND (D) NEITHER THE GridSolveEAM NOR THE
REGENTS HAVE AN OBLIGATION TO PROVIDE DEBUGGING, MAINTENANCE, SUP-
PORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS EXCEPT WHEREXPLICIT
WRITTEN ARRANGEMENTS HAVE BEEN PRE-ARRANGED.

Damages Disclaimer USER ACKNOWLEDGES AND AGREES THAT IN NO EVENT WILL
THE GridSolve TEAM OR THE REGENTS BE LIABLE TO USER FOR ANY SEIAL, CON-
SEQUENTIAL, INDIRECT OR SIMILAR DAMAGES, INCLUDING ANY LOST PROFITS OR
LOST DATA ARISING OUT OF THE USE OR INABILITY TO USE GridSolv&VEN IF THE
GridSolve TEAM OR THE REGENTS HAVE BEEN ADVISED OF THE POSSIBTY OF
SUCH DAMAGES.

Attribution Requirement : User agrees that any reports, publications, or otheraiiscé of results
obtained with GridSolve will attribute its use by an appiaf# citation. The appropriate reference
for GridSolve is “The GridSolve Software Program (GridS9lwas developed by the GridSolve
Team at the Computer Science Department of the Universifieohessee, Knoxville. All rights,

title, and interest in GridSolve are owned by the GridSoleam.”

Compliance with Applicable Laws. User agrees to abide by copyright law and all other appli-
cable laws of the United States including, but not limitedetxport control laws.

Contents

1 Overview of GridSolve 1

1
1.2.1 Background 1
1.2.2 Overview and Architecture. 2

3

2 Downloading, Installing, and Testing 4
2.1 InstallationonUnix Systems e
2.2 Testing the Unix Installation.
2.3 Installation on Windows Systems. e
2.4 Testing the Windows installation

2.5 Using GridSolve from Windows Matlab

NvVo o b

3 GridRPC API 8
3.1 Introduction. e e e e e e e 8
3.2 Function Handlesand SessionIDs. 0. 8
3.3 Initializing and Finalizing Functions 8
3.4 Remote Function Handle Management Functions. 8
3.5 GridRPC CallFunctions. e 9
3.6 Asynchronous GridRPC Control Functions. 9
3.7 Asynchronous GridRPC Wait Functions. 9
3.8 Error Reporting Functions. e e 10

4 NetSolve Compatibility Interface 11
4.1 Introduction. e e e e e e 11

5 Matlab Interface 12
5.1 Introduction. e e e e e e e 12
5.2 Building and Enabling the Matlab Interface 12
5.3 Matlab GridSolve API e 12
5.4 Example Matlab session 13

6 GridSolve Request Farming 14
6.1 Introduction. e e e e e e 14
6.2 CallingFarminginC. e 14
6.3 Anexample. e e 15

6.4 Catching errors. e e e e
6.5 FarminginMatlab

7 Running the GridSolve Agent

8 Running the GridSolve Server
8.1 The Server ConfigurationFile.
8.2 ServerRestrictions.
8.3 Adding Servicestoa GridSolve Server o0

9 GridSolve Management Tools for Administrators

10 GridSolve Interface Definition Language
10.1 gsIDL Example. e e e
10.2 Description ofthegsIDL Grammar. v v v i e
10.3 Determining the C Client Calling Sequence.
10.4 Determining the Fortran Client Calling Sequence

11 Interfacing with Batch Queues
11.1 Submit Script. e e e e e
11.2 Probe Script e e
11.3 Cancel Script. e e e e
11.4 Examples. e e
11.4.1 gsIDL Specification. e
11.4.2 Example SubmitScript. oo
11.4.3 Example Probe Script o
11.4.4 Example Cancel Script. e

12 Distributed Storage Infrastructure (DSI) in GridSolve
12.1 DSlIntroduction e
12.2 Using DSI. o e e
12.3 DSIAPL. . o
12.3.1 grpcdsiopen. o i e e e e
12.3.2 grpedsiclose. e
12.3.3 grpcdsiwrite_vector.
12.3.4 grpedsiwrite_matrix. e
12.3.5 grpcdsireadvector e
12.3.6 grpcdsireadmatrix
12.4 DSIExample. e e e e
12.4.1 Standard Example e
12.4.2 DSIExample. e

13 GridSolve Profiling Interface
13.1 Introduction. L e
13.2 Using the Profiling Interface.,
13.3 Example. e

17

18
19
19
20

21

14 Using the NAT Proxy
14.1 Starting the NAT Proxy and Proxied Server.

A Environment Variables

B GridRPC API Specification
B.0.1 Initializing and Finalizing Functions
B.0.2 Remote Function Handle Management Functions.
B.0.3 GridRPCC CallFunctions
B.0.4 Asynchronous GridRPC Control Functions.
B.0.5 Asynchronous GridRPC Wait Functions
B.0.6 Error Reporting Functions

C NetSolve Compatibility
C.1 Incompatibilites. e e
C.2 GridSolve Enhancements. e

Vi

List of Figures

1.1 Overview of GridSolve. e

Vii

Chapter 1

Overview of GridSolve

1.1 An Introduction to Distributed Computing

The efficient solution of large problems is an ongoing threfidesearch in scientific computing.
An increasingly popular method of solving these types obf@ms is to harness disparate computa-
tional resources and use their aggregate power as if it vegrtained in a single machine. This mode
of using computers that may be distributed in geography,alsas ownership, has been termed Dis-
tributed Computing. Some of the major issues concerned Digtributed Computing are resource
discovery, resource allocation and resource managenait;tblerance, security and access con-
trol, scalability, flexibility and performance. Variougganizations have developed mechanisms that
attempt to address these issues, each with their own pé&xgsecf how to resolve them.

1.2 Whatis GridSolve?

GridSolve (http://icl.cs.utk.edu/gridsolve) is an exdaenpf a Distributed Computing system that
hopes to present functionalities and features that a widetyaof scientists will find highly useful
and helpful.

1.2.1 Background

Various mechanisms have been developed to perform congngaicross diverse platforms. The
most common mechanism involves software libraries. Uuofately, the use of such libraries
presents several difficulties. Some software librarieshéglly optimized for only certain plat-
forms and do not provide a convenient interface to other edersystems. Other libraries demand
considerable programming effort from the user. While saiveiols have been developed to alleviate
these difficulties, such tools themselves are usually @viglon only a limited number of computer
systems and are rarely freely distributed. Matlabij/V92] and Mathematica\[/ol96] are examples
of such tools. These considerations motivated the estabdiat of the GridSolve project. The basic
philosophy of GridSolve is to provide a uniform, portable afficient way to access computational
resources over a network.

SERVERS

@ &n

o

Py

NETSOLVE
AGENT
J 2
Monitor 3 3
= S [|©
Aa— x
I NWS
Database
$ Brokered
Scheduler Decision

ﬂ}m

Figure 1.1: Overview of GridSolve

1.2.2 Overview and Architecture

The GridSolve project is being developed at the Universityannessee’s Computer Science De-
partment. It provides remote access to computational ressuboth hardware and software. Built
upon standard Internet protocols, like TCP/IP socketss énvailable for all popular variants of
the UNIX™ operating system, and parts of the system areabailfor the Microsoft Windows
2000™ and Windows XP™ platforms. The GridSolve system ispmisad of a set of loosely
connected machines. By loosely connected, we mean that thashines are on the same local,
wide or global area network, and may be administrated byifit institutions and organizations.
Moreover, the GridSolve system is able to support thesedctiens in a heterogeneous environ-
ment, i.e. machines of different architectures, operasygjems and internal data representations
can participate in the system at the same time.

Figurel.1shows the global conceptual picture of the GridSolve systanthis figure, we can
see the three major components of the systemclilat, theagent, and theservers (computational
or software resources). GridSolve and systems like it aenafeferred to as Grid Middleware.
GridSolve acts as a glue layer that brings the applicatiamser together with the hardware and/or
software it needs to complete useful tasks. At the top ter,GridSolve client library is linked in
with the user’s application. The application then maketsdal GridSolve’s application program-
ming interface (API) for specific services. Through the ABIlidSolve client-users gain access to
aggregate resources without needing to know anything atmuaputer networking or distributed
computing. In fact, the user does not even have to know remestaurces are involved. The Grid-
Solve agent maintains a database of GridSolve servers althgheir capabilities (hardware per-
formance and allocated software) and dynamic usage &tatist uses this information to allocate
server resources for client requests. The agent finds settvat will service requests the quick-
est, balances the load amongst its servers and keeps tréaikedfones. The GridSolve server is

a daemon process that awaits client requests. The serveugam single workstations, clusters
of workstations, symmetric multi-processors or machinéh wassively parallel processors. A
key component of the GridSolve server is a source code genevaich parses a GridSolve Inter-

face Definition Language (gsIDL) file. This gsIDL contain$oirmation that allows the GridSolve

system to create new modules and incorporate new funciti@sal In essence, the gsIDL defines
a wrapper that GridSolve uses to call functions being ino@@d. The (hidden) semantics of a
GridSolve request are:

1. Client contacts the agent for a list of capable servers.

2. Client contacts server and sends input parameters.

3. Server runs appropriate service.

4. Server returns output parameters or error status tatclien

From the user’s perspective, the call to GridSolve actdlikesthe call to the original function.

1.2.3 Who is the GridSolve User?

There are two types of GridSolve users. The first type of us@mie who installs and accesses
only the client interface(s) and utilizes existing poolsresources (agent(s) and server(s)). The
second type of GridSolve user installs and administrateswin GridSolve system (client, agent(s),
server(s)), and potentially enables his software to be bye@ridSolve. This Users’ Guide ad-
dresses the needs of both types of users. Note that the telmmiriistrates” or “administrator” here
simply refers to the person setting up and maintaining thdSalve agent and server components
— no superuser privileges are needed to install or use anpaoent of the GridSolve system.

Chapter 2

Downloading, Installing, and Testing

The GridSolve client software is available for UNIX and UNIiXe operating systems and Win-
dows environments. All of the client, agent, and servervgafe is bundled into one tar-gzipped
file for UNIX-like operating systems. There is a separatérithstion file for the Windows client.
No root/superuser privileges are needed to install or ugecamponent of the GridSolve system.
GridSolve uses autoconf to create a build environment thatnilar to most other Open Source
projects.

2.1 Installation on Unix Systems

The GridSolve distribution tar file is available from the @3blve web site located at the following
URL:

http:/ficl.cs.utk.edu/gridsolve/software/index.html

After uncompressing the source code, go to the root of théSative source tree and using the
provided configure script, simply do:

% ./configure
% make
% make check

There are a few GridSolve-specific options that may be spécifihen running configure:

o —-with-blas : this specifies the location of the BLAS library. If the lilyas in a standard lo-
cation, this does not need to be specified,-with-blas=/nonstandard/lib/libblas.a
would be used to specify a nonstandard location.

* --with-lapack . this specifies the location of the LAPACK library. If theldry is in a stan-
dard location, this does not need to be specified, but you pacifg a nonstandard location
with --with-lapack=/nonstandard/lib/liblapack.a

« —-with-matlab : specifies the location of the Matlab installation. You mpgdafiy --with-matlab=no
to disable the Matlab client.

e --with-dsi-ibp . enables DSI and specifies the location of the IBP libraryse for DSI.
See Chaptet2 for more information about using the DSI API.

4

» --enable-debug : if enabled, this causes debugging output to be printede@dmsole.

* --enable-profiling . enables client profiling of the various stages in the procecall
(e.g. contacting agent, sending data, etc.). See Chaptler more information about the
profiling interface.

Useautoreconf if you need to regenerate the Autotools files. This shoulg bel necessary
if you obtain the code from the CVS repository. You will needetatively new version of the
Autotools tools.

% autoreconf
When building for multiple architectures:

% mkdir ‘config_ac/config.guess'’
% cd ‘config_ac/config.guess'
% ../configure

% make

% make check

For Solaris, this might be an example for a make from the C\f$he builders. This disables
dependency tracking because Solaris make/cc may havedraith it. When building from a
release version, you should not need the disable-depeywieking flag because the dependency
information is hardwired into the Makefiles.

% mkdir sparc-sun-solaris2.8

% cd sparc-sun-solaris2.8

% ../configure -C --enable-debug --disable-dependency-t racking
% make -k

% make -k check

Note that the "make check” part of the build procedure is négnded to test anything. It is
used to build the GridSolve services. If you are only goingde the client, it is not necessary.

2.2 Testing the Unix Installation

Testing solely the client software means that a pre-exjs@GmidSolve system will be contacted,
possibly the default agent and servers running at the Usityeof Tennessee. That system can be
contacted via the hogjridsolve.cs.utk.edu which should always be running an agent. The
step-by-step procedure to test your GridSolve client lfadtan is as follows:

% cd GridSolve/srcitesting/gridrpc
% setenv GRIDSOLVE_AGENT gridsolve.cs.utk.edu
% .Jtotaltest

While the tester is running, it prints messages about itwgi@. This test tests only the
GridRPC interface. Similar tests for the NetSolve comjiiitiiinterfaces (C and Fortran77) exist
in the srcftesting/netsolve directory. Details of this process are explained in theofgihg
chapters. For more information on the C and Fortran77 iated, see Chaptdr Chapter5 de-
scribes how to test the Matlab interface.

2.3 Installation on Windows Systems

This section describes the installation and testing of theddivs version of the GridSolve client
software. At present, the software is distributed in thenfaf a self-extracting exe file. The Win-
dows client only works with Windows 2000™ and Windows XP™witl not run on Windows
98™ or earlier. The contents of the self-extracting exe fieas follows, wheré&RIDSOLVEDIR
refers to the directory where you have unzipped the didtabu

» GRIDSOLVEDIR\ — This directory contains the readme file and an installagiznipt.

GRIDSOLVEDIR\lib — This directory contains the GridSolve client library.

GRIDSOLVEDIR\matlab — This directory contains the Matlab binaries.

GRIDSOLVEDIR\tools — This directory contains various tools for managing Grig&o

GRIDSOLVEDIR\testing — This directory contains various sample binary test pnogrthat
you can run to verify your installation.

The installation process is quite simple.
1. Run the exe you downloaded from the GridSolve webpagettaabihe files to a directory.
2. Then run the executabjgidsolve _install.exe to set the registry keys for GridSolve.

To determine the agent host name, the user can issue thwifaflaommands from a DOS
prompt:

C:\> cd GRIDSOLVE_DIR\tools
C:\> getagent

To set a new agent host name, the user must issue the foll@emgiand:

C:\> cd GRIDSOLVE_DIR\tools
C:\> setagent [agent host name]

If the agent host name is not specified on the command linewjibbbe prompted for a host
name. You will have the option of specifying a name or accgptine current agent name set in the
registry.

The de-installation process is quite similar.

C:\> cd GRIDSOLVE_DIR
C:\> gridsolve_install -uninstall

[The above program removes the keys from the Windows registr y]
C:\> rmdir /s GRIDSOLVE_DIR

2.4 Testing the Windows installation

You can use the various programs in GRIDSOLVEDIR \testing directory to test your GridSolve
installation. Remember that a valid GridSolve agent andeseshould already be running, and the
required problems should be installed on the servers. Headist of the test programs currently
available:

e C_totaltest
* c_totaltestasync
 f_totaltest

« f_totaltestasync

For example, to perform a sample run ofataltest, the user must do the following:
1. Usesetagent to point to the correct agent host. (esgtagent gridsolve.cs.utk.edu)

2. Runc_totaltest.exe from the testing directory.

2.5 Using GridSolve from Windows Matlab

A user new to Gridsolve will find the Matlab interface very pien The matlab interface is in
GRIDSOLVEDIR\matlab . To access the interface:

1. Start up Matlab
2. Click on Filex> Set Path ...
3. Add theGRIDSOLVEDIR\matlab directory to the path

The interface consists of 4 GridSolve dlls, which shouldtgiur Matlab pathgridsolve.dll ,
gridsolve _nb.dll , gridsolve _err.dll , andgridsolve _errmsg.dll

To begin testing from Matlab, there are a couple of commahdsdisplay the status of the
system. The following command prints the agent and serversmtly available:

gridsolve('?’)

Specifying the same function name without any argumentspnitt the list of problems that can
be solved:

gridsolve

Chapter 3

GridRPC API

3.1 Introduction

The primary APl used by GridSolve is GridRPC, a standardipedable, and simple programming
interface for remote procedure call (RPC) over the Gridhla section, we informally describe the
GridRPC model and the functions that comprise the API. AdpeB contains a detailed listing of
the function prototypes. Chaptdrdescribes the NetSolve compatibility layer, which progide
API that matches the API of NetSolve 2.0.

3.2 Function Handles and Session IDs

Two fundamental objects in the GridRPC model faretion handles andsession IDs. The function
handle represents a mapping from a function name to an gestainthat function on a particular
server. The GridRPC API does not dictate the mechanics ofires discovery since different un-
derlying GridRPC implementations may use vastly diffefamtocols. Once a particular function-
to-server mapping has been established by initializingnatfon handle, all RPC calls using that
function handle will be executed on the server specifiedahtimding. A session ID is an identifier
representing a particular non-blocking RPC call. The sadf) is used throughout the API to allow
users to obtain the status of a previously submitted nookirig call, to wait for a call to complete,
to cancel a call, or to check the error code of a call.

3.3 Initializing and Finalizing Functions

The initialize and finalize functions are similar to the MRltialize and finalize calls. Client
GridRPC calls before initialization or after finalizationlhfail.

* grpc _initialize reads the configuration file and initializes the required nhesl

e grpc _finalize releases any resources being used by GridRPC.

3.4 Remote Function Handle Management Functions

The function handle management group of functions allows creating and destroying functiam-
dles.

e grpc _function _handle _default creates a new function handle using the default server.
This could be a pre-determined server name or it could bevarsrat is dynamically chosen
by the resource discovery mechanisms of the underlyingRE{ implementation, such as
the NetSolve agent.

e grpc _function _handle _init creates anew function handle with a server explicitly dpsti
by the user.

e grpc _function _handle _destruct releases the memory associated with the specified func-
tion handle.

» grpc _get _handle returns the function handle corresponding to the giveni@e$b (that is,
corresponding to that particular non-blocking request).

3.5 GridRPC Call Functions

A GridRPC may be either blocking (synchronous) or non-hiegkasynchronous) and it accepts
a variable number of arguments (likentf) depending on the calling sequence of the particular
routine being called.

e grpc _call makes a blocking remote procedure call with a variable nurabarguments.

e grpc _call _async makes a non-blocking remote procedure call with a variabi@brer of
arguments.

3.6 Asynchronous GridRPC Control Functions

The following functions apply only to previously submittedn-blocking requests.
 grpc _probe checks whether the asynchronous GridRPC call has completed

 grpc _probe _or checks whether any of the previously issued non-blockitlg aa given set
have completed.

» grpc _cancel cancels the specified asynchronous GridRPC call.

e grpc _cancel _all cancelsall previously issued calls.

3.7 Asynchronous GridRPC Wait Functions

The following five functions apply only to previously subted non-blocking requests. These calls
allow an application to express desired non-determiniimpletion semantics to the underlying
system, rather than repeatedly polling on a set of sesdizmgFrom an implementation standpoint,
such information could be conveyed to the OS scheduler taceedycles wasted on polling.)

» grpc _wait blocks until the specified non-blocking requests to coneplet

e grpc _wait _and blocks untilall of the specified non-blocking requests in a given set have
completed.

» grpc _wait _or blocks untilany of the specified non-blocking requests in a given set has com-
pleted.

e grpc _wait _all blocks untilall previously issued non-blocking requests have completed.

» grpc _wait _any blocks untilany previously issued non-blocking request has completed.

3.8 Error Reporting Functions

Of course it is possible that some GridRPC calls can fail, smeed to provide the ability to check
the error code of previously submitted requests. The fofigwerror reporting functions provide
error codes and human-readable error descriptions.

e grpc _error _string returns the error description string, given a numeric ecoate.
» grpc _get _error returns the error code associated with a given non-blocieggest.

e grpc _get _failed _sessionid returns the session ID of the last invoked GridRPC call that
caused a failure.

10

Chapter 4

NetSolve Compatibility Interface

4.1 Introduction

The C and Fortran77 client interfaces for NetSolve compdyilare compiled as part of the normal
build process, so if you have followed the procedures cedlim Chaptel, the following library
should exist:

src/netsolve/libnetsolve.a

This library contains both the C and Fortran77 interfaces.
Before linking to one of these libraries, the user must idelthe appropriate header file in his
program:

* src/client/netsolve.h in C programs
* src/client/fnetsolve.h in Fortran77 programs

The Fortran77 include file is not mandatory, but increasesstiurce program readability by
allowing calling subroutines to manipulate the NetSolwerecodes by variable name rather than
by integer value. See\|AB " 07] for detailed information about using the NetSolve API. Toen-
patibility layer included in GridSolve works the same as dhigiinal NetSolve API, but because
GridSolve uses a different Interface Definition Languabe,dalling sequence should be structured
according to the GridSolve mechanism. See Chapidor more detail on determining the calling
sequence.

11

Chapter 5

Matlab Interface

5.1 Introduction

GridSolve can be built with an optional Matlab client inteé€. This interface allows a Matlab user
to transparently and easily use remote services from witlérMatlab session. GridSolve handles
all the details involved in sending the arguments to the @piette server and fetching the results.

5.2 Building and Enabling the Matlab Interface

At this time, if a Matlab installation can be located durirg tconfiguration process, the Matlab
GridSolve interface will be built by default. If you wish taiitd without Matlab, you can pass the
option--with-matlab=no to the configure script.

In order to use GridSolve, certain files need to be on the Matsarch path. In a C style shell,
the following will setup the correct path. You can also use Matlab commandddpath to setup
the path.

setenv. MATLABPATH ${MATLABPATH}:${GRIDSOLVE_ROOT}${G RIDSOLVE_ARCH}/src/matlab_client
setenv. MATLABPATH ${MATLABPATH}:${GRIDSOLVE_ROOT}/src /matlab_client

5.3 Matlab GridSolve API

The Matlab GridSolve interface closely matches the Grid RPC

* gs_info('service_name’)
This call will return information about the service.

e [output_args, ..] = gs_call(’'service_name, input_args,)
This will make a blocking call to a GridSolve server that canfprm the service.

« sessionid = gs_call_async('service_name, input_args, ..)
This will make a asynchronous non-blocking call to a Grid®derver that can perform the
service. The sessionid is used to probe the call and to waitfults.

e status = gs_call_probe(sessionid)
This is used to probe an asynchronous call to see if it has ledaab It returns 1 if the call
has completed.

12

[output_args, ..] = gs_wait(sessionid)
This is used to wait for the completion of an asynchronouks aatl fetch the resulting output.
On error, the output is all blank.

e status = gs_cancel(sessionid)
This is used to wait for the completion of an asynchronouk aatl fetch the resulting output.
The status is 0 on success.

e status = gs_get last_error
Returns an error number for the last error that occurred.

e str = gs_error_string(errnum)
Returns a string message for the error errnum.

5.4 Example Matlab session

The following example shows how the Matlab client can be usé&tle function that is called
(vpass_int) simply sends an integer vector back and forth, doing ngthiseful. It is used for
testing and timing GridSolve.

>> gs_info('vpass_int")
Description of call:

<problem name="vpass_int" type="subroutine" descriptio n="Does nothing...just for testing performance
<arglist count="2">
<arg name="ivec" inout="inout" datatype="int" objectype ="vector" rowexp="n" colexp="1" description="n
<arg name="n" inout="in" datatype="int" objectype="scal ar" rowexp="1" colexp="1" description="none"
<farglist>

<infolist count="4">

<info type="LANGUAGE" value="C" />

<info type="LIBS" value="-L$(top_builddir)/problems/p assing -lpass" />

<info type="COMPLEXITY" value="1.0" />

<info type="MAJOR" value="ROW" />

<finfolist>
</problem>
Matlab call prototype:
[ivec] = vpass_int(ivec, n)
>> jvec = rand(10,1);
ivec = rand(10,1);
>> [sessionid] = gs_call_async(vpass_int', ivec, 10);
>> status = gs_probe(sessionid);
>> status
status =

1
>> [outvec] = gs_wait(sessionid);
>> size(outvec)
ans =
10 1

13

Chapter 6

GridSolve Request Farming

6.1 Introduction

Farming is a way of calling GridSolve to manage large numbérequests for a single GridSolve
problem. Many GridSolve users are confronted by situatiinen many somewhat similar compu-
tations must be performed in parallel. One way to do this il&olve is to write non-blocking calls
to grpc _call _async() in C for instance. However, this can become cumbersome. elptbsent
distribution, this callgrpc _farm() , is only available from C and Matlab. A Fortran interfacelwil
most likely not be provided because of pointer management.

6.2 Calling FarminginC

Like grpc _call) andgrpc _call _async() , thegrpc _farm() function takes a variable number
of arguments. Its first argument is a string that describesténation range. This string is of the
form i=%d,%d (in C string format symbols). The second argument is a probtame appended
with an opening and a closing parenthesis. The argumeritavioh are similar in intent to the
ones supplied tgrpc _call) , but are iterators as opposed to integers or pointers. Whenaser
was passing, say an integer,g@c _call) , he now needs to pass an array of integers and tell
grpc _farm() which element of this array is to be used for which iteratidrhis information is
encapsulated in an iterator and we provide three functiogemnerate iterators:

grpc_int()
grpc_int_array()
grpc_ptr_array()
Let us review these functions one by one.
» grpc.int() — This function takes only one argument: a characténgstthat contains an ex-
pression that is evaluated to an integer at each iteratiba.f@rmat of that string is based on

a Shell syntax. $i represents the current iteration inded, @dassic arithmetic operators are
allowed. For instance:

grpc_int("$i+1")

returns an iterator that generates an integer equal to arsetipé current iteration index at
each iteration.

14

e grpcint_array() — This function takes two arguments: i. a pointerrtorsgeger array (int *);
ii. a character string that contains an expression. Foants,

grpc_int_array(ptr,"$i")

returns an iterator that generates at each iteration agenequal to thé!" element of the
array ptr where is the current iteration index.

o grpcptr_array() — This function takes two arguments: i. a pointemaay of pointers (void
**); ii. a character string that contains an expression. iRstance,

grpc_ptr_array(ptr,"$i")

returns an iterator that generates at each iteration aguoivtich is theit" element of the
array ptr where is the current iteration index.

6.3 Anexample

Let us assume that the user wants to sort an array of integér&ndSolve using the C interface.
The default GridSolve server comes with a default probleliedagsort that does a quicksort on an
integer vector. The call looks like

status = grpc_call(&handle,size,ptr,sorted);

where size is the size of the array to be sorted, ptr is a poiatéhe first element of the array,
and sorted is a pointer to the memory space that will hold ¢tneed array on return. What if the
user wants to sort 200 arrays? One way is to write 200 callbease above. Not only would
it be tedious, but also inefficient as the sorts would be dareessively, with no parallelism. In
order to obtain parallelism, one must cagipc _call _async() and make the corresponding calls
togrpc _probe() andgrpc _wait() as explained in Chaptéror usegrpc _farm() . Before calling
grpc _farm() , the user needs to construct arrays of pointers and intdggrsontain the arguments
of each of the GridSolve calls. This is straightforward: véhihe user would have called GridSolve
as:

statusl = grpc_call_async(&handle, &requestl, sizel, ptr 1, sortedl);
status2 = grpc_call_async(&handle, &request2, size2, ptr 2, sorted2);
status200 = grpc_call_async(&handle, &request200, size2 00, array200, sorted200);

and then to have calls tppc _probe() andgrpc _wait() for each request. With farming, one only
needs to construct three arrays as:

int size_array[200];

void *ptr_array[200];

void *sorted_array[200];
size_array[0] = sizel;
ptr_array[0] = ptrl;
sorted_array[0] = sortedl;

15

Then,grpc _farm() can be called as:

status_array = grpc_farm("i=0,199",&handle,
grpc_int_array(size_array,"$i"),
grpc_ptr_array(ptr_array,"$i"),
grpc_ptr_array(sorted_array,"$i"));

In short,grpc _farm() is a concise, convenient way of farming out groups of reque3f course, it
useggrpc _call _async() underneath, thereby ensuring fault-tolerance and lo#thbig.

6.4 Catching errors

grpc _farm() returns an integer array. That array is dynamically alledaand must be freed by
the user after the call. The array is at least of size 1. The dlsment of the array is either
GRPCNQERRORY some GridRPC error code suchGRPCOTHERERRORCODEIf itis GRPCNQERROR
then the call was completed successfully and the array izefls If the first element of the array
is not GRPCNQERRORthen at least one of the requests failed. The array is theizefone plus the
number of requests and tiig+)" element of the array is the error code for therequest. Here
is an example on how to print error messages:

status = grpc_farm("i=0,200",....);
if (status[0] == GRPC_NO_ERROR) {
fprintf(stderr,"Success\n");
} else {
for (i=1;i<201;i++) {
fprintf(stderr,"Request #%d:",i);
fprintf(stderr,"reason: %s\n", grpc_error_string(stat us[i)));
}
}

free(status);

6.5 Farming in Matlab

TBA

16

Chapter 7

Running the GridSolve Agent

After compiling the agent as explained in Chaplethe executable of the GridSolve agent is:
$GRIDSOLVE_ROOQOT/src/agent/GS_agent

The proper command line for this program is
GS_agent [-c] [-] lodfile] [-w httpd_port]

When invoked with no arguments, a stand-alone agent iedtaihis agent is now available for
registrations of GridSolve servers wanting to participata new GridSolve system. After servers
are registered, client programs can contact this agent avel lequests serviced by one or more of
the registered servers. If there is already an agent ruromnnfge machine, you will need to adjust
the environment variables to avoid conflicts with the pdnt &are already in use. See Appendix
for details.

The-l option specifies the name of a file to use for logging purposes.

% GS_agent -1 /home/user/agent_logfile

This file is where the agent logs all of its interactions (awdgibly errors) since it is a daemon
with no controlling terminal and therefore has no way to dis ththerwise. This log file also
produces very useful information about requests, amongrdtiings, that helps administrators
know how their GridSolve system is being used. If-hooption is specified, the default log file
is $GRIDSOLVEROOT/gs_agent.log . This means that successive runs of the agent with no spec-
ification of a log file will overwrite the original log file, sd the information is needed, it must
be copied to another file. To terminate an existing agent ferygan existing GridSolve system),
the user should refer to the GridSolve management toolscplarly GSkillagent , as outlined in
Chaptero.

If you do not want to run the agent as a daemon and would like¢cedl output logged to the
console instead of a file, specify tke option.

The -w option allows changing the port on which the agentp taemon listens. By default,
the daemon attempts to use port 8080. If “disable” is spec#tethe port, the agent will not attempt
to start the http daemon.

17

Chapter 8

Running the GridSolve Server

After compiling the server as explained in Chaiethe executable of the GridSolve server is:
$GRIDSOLVE_ROOT/src/server/GS_server

The proper command line for this program is
GS_server [-c] [logfile] [-s server config]

This executable uses a configuration file for initializing tBridSolve server. The default con-
figuration file is$GRIDSOLVEROOT/server _config . This is the file that should be used for first
experiments and for testing the system. However, it is ptessd customize or expand the function-
ality of a server by modifying this file. The option may be used to specify an alternate location
for the file, for example:

% GS_server -s /tmpltest/server_config
The-l option specifies the name of a file to use for logging purposes.
% GS_server -I /homefuser/server_logfile

This file is where the server logs all of its interactions (@adsibly errors) since it is a daemon
with no controlling terminal and therefore has no way to dis ththerwise. This log file also
produces very useful information about requests, amongrdtiings, that helps administrators
know how their GridSolve system is being used. If-hooption is specified, the default log file
is $GRIDSOLVEROOT/gs_server.log . This means that successive runs of the server with no spec-
ification of a log file will overwrite the original log file, sd the information is needed, it must be
copied to another file. To terminate an existing server (@rg@an existing GridSolve system), the
user should refer to the GridSolve management tools, pdatiy GSkillserver , as outlined in
Chaptero.

Note: When running multiple servers within the same dimgcteee, if a unique log file is not
specified, then the most recently started server will tale the log file. Log messages from other
servers will be lost. Use thé parameter to specify a unique log for each server to avod thi

If you do not want to run the server as a daemon and would lilse#oall output logged to the
console instead of a file, specify tke option.

18

8.1 The Server Configuration File

The server configuration file is used to customize the serWidre default configuration file in
$GRIDSOLVEROOT/server _config should be used as a template to create new configuration files.
This configuration file is organized as follows. A line cantom one of three things:

* A comment — if the line starts with#&(pound symbol) then the remainder is ignored and may
be used for comments.

* Nothing —if the line is blank, it is ignored.

* Attribute Assignment — these assignments take the form
ATTRIBUTE=VALUE

whereATTRIBUTEis the name of the attribute being defined &AHUEis a string representing
the value to be assigned. For example

AGENT=gridsolve.cs.utk.edu

Let us review some of the possible attributes and how theybeansed to precisely define a
GridSolve server as it is done in the default configuratiaa fil

* AGENT- the name of the host running the agent
» PORT- the port on which this server should listen
e OUTPUTTTL — the number of seconds to allow unretrieved results to nestared on disk

In addition, you may define your own attributes. These willreported to the agent upon
registration of the server and may be used by the client terifiig the server selection.

8.2 Server Restrictions

Sometimes it is useful to restrict the circumstances unddctwa server will accept jobs. The
GridSolve server supports two methods of restricting ushgdime and by the number of running
jobs.

For example, to only accept jobs from 9am to 5pm (local tiradyl a line to the servaronfig
file such as:

RESTRICT_TIME=9:00am-5:00pm

The beginning and ending times may formatted as “H:M:S” MH:or “H”. If “am” or “pm” is not
appended the time is assumed to be in 24-hour format.

The server can also limit the total number of jobs that it wit at a time. For example, to allow
only three jobs to run at a time, add a line to the sewanfig file such as:

RESTRICT_JOBS=3

19

8.3 Adding Services to a GridSolve Server

Before incorporating a function into GridSolve, the usesimwrite a GridSolve Interface Definition
Language (gsIDL) file that describes the calling sequenee.Chaptet 0 for more detail on writing
these files. Once the gsIDL file has been written, it must bepdewh using the GridSolve problem
compiler in the3GRIDSOLVE_ROOT/src/problem directory. For example:

% problem_compile ddot.idl

The problem compiler generates a service director$GRIDSOLVE_ROOT/service) for each prob-
lem specification in the gsIDL file. In this service directaing problem compiler creates a service
executable that is executed by the GridSolve server. Towrethe server administrator does not
need to restart the server to add a new service.

20

Chapter 9

GridSolve Management Tools for
Administrators

The GridSolve distribution comes with tools to manage thel&slve system. After compilation
the following executables are available:

$GRIDSOLVE_ROOT/src/tools/GS_config
$GRIDSOLVE_ROOT/srcltools/GS_get_example
$GRIDSOLVE_ROOT/srcltools/GS_killagent
$GRIDSOLVE_ROOT/srcltools/GS_killserver
$GRIDSOLVE_ROOT/srcltools/GS_probdesc
$GRIDSOLVE_ROOT/src/tools/GS_problems

Let us review these executables one by one.

» GSconfig — This executable takes one argument on the command linerathe of a host
running a GridSolve agent. It then prints a list of serverdigipating in the GridSolve
system:

% GS_config cupid.cs.utk.edu

AGENT: cupid [3 servers]

SERVER: ig.cs.utk.edu (160.36.58.91:9000)

SERVER: kiransagi (160.36.253.12:9000)

SERVER: ns4 (192.168.0.5:9000, proxy=160.36.58.63:8888)

For servers that are proxied, the proxy information is jedrélso.

e GSget _example — This is used to request a C source code example for the sokséivice.
The usage is as follows.

Usage: GS_get example <problem name> [server name]

The name of the problem is required, but a specific serverrfase is optional. If specified,
the example will be requested from that server. The C sowde is then printed to stdout.

21

» GSkillagent ~ — This executable takes one argument on its command line rdime of a
host running a GridSolve agent. After a (basic) user auitesitn, the executable kills the
agent.

% GS_killagent gridsolve.cs.utk.edu

For this beta release, the password to kill agents and seivdrardcoded to “GridSolve”,
however in the first official release we will have authent@magenabled for these tools.

e GSkillserver — This executable takes two arguments on its command line rame of a
host running a GridSolve agent and the name of a host runn@gdsolve server. After a
(basic) user authentication, the executable kills theesensing the agent as an entry-point
into the system.

% GS_Kkillserver gridsolve.cs.utk.edu cupid.cs.utk.edu

» GSproblems — This executable takes one argument on the command linenathe of a host
running a GridSolve agent. It then prints a list of probleimest itan be solved by contacting
that agent.

% GS_problems cupid.cs.utk.edu
AGENT: cupid [26 problems]
dgesv

dposv

ddot

daxpy

dgemv

dgemm

ctotal

ftotal

sleeptest

ns_abort
return_int_scalar
return_float_scalar
return_double_scalar
return_char_scalar
return_int_vector
return_float_vector
return_double_vector
return_char_vector
return_int_matrix
return_float_matrix
return_double_matrix
return_char_matrix
vpass_int
mpass_int_rowmaj
varlen_return
mandel

22

» GSprobdesc — This executable takes two arguments on the command lirefirBhargument
is the name of a host running a GridSolve agent and the seecgochant is the name of the

problem whose description should be printed. It then printdetailed description of the
specified problem:

% GS_probdesc cupid.cs.utk.edu ddot
Problem Name: ddot

Problem Description:

Forms the dot product of two vectors.
Double Precision routine.
http://www.netlib.org/blas/

Argument O:
Argument Name: n
Description: none
In/out mode: in
Data type: int
Object type: scalar
Row size expr: 1

Column size expr: 1

Argument 1
Argument Name: dx
Description: none
In/out mode: in
Data type: double
Object type: vector
Row size expr: n*incx

Column size expr: 1

Argument 2
Argument Name: incx
Description: none
Infout mode: in
Data type: int
Object type: scalar
Row size expr: 1

Column size expr: 1

Argument 3:
Argument Name: dy
Description: none
Infout mode: in
Data type: double
Object type: vector

23

Row size expr: n*incy
Column size expr: 1

Argument 4:
Argument Name: incy
Description: none
Infout mode: in
Data type: int
Object type: scalar
Row size expr: 1

Column size expr: 1

Argument 5:
Argument Name: __retval
Description: Return value
Infout mode: out
Data type: double
Object type: scalar
Row size expr: 1

Column size expr: 1

Problem attributes:
LANGUAGE: FORTRAN
LIBS: $(BLAS_LIBS)
COMPLEXITY: 2.0*N
MAJOR: COLUMN

24

Chapter 10

GridSolve Interface Definition Language

The GridSolve Interface Definition Language (gsIDL) is theamanism through which GridSolve
enables services to be invoked on behalf of the user. GngSmmes with several example gsIDL
files in the$GRIDSOLVEROOT/problems/idl directory. First we will show a simple example and
then examine the gsIDL file format in more detail.

10.1 gsIDL Example

Suppose we want to integrate the BLAS routiiiet (which computes the dot product of two
vectors) into GridSolve. As you can see from the originaltéor header, it takes two vectors, a
length argument, and a stride argument for each of the \&ctor

double precision function ddot(n,dx,incx,dy,incy)
double precision dx(*),dy(*)
integer n,incx,incy

The gsIDL file corresponding to this function would be:

1 FUNCTION double ddot(IN int n, IN double dx[n*incx], IN int i ncx,
2 IN double dy[n*incy], IN int incy)

3 "Dot product (from BLAS)"

4 LANGUAGE = "FORTRAN"

5 LIBS = "lusr/localllib/libf77blas.a /usr/localllib/lib atlas.a"

6 COMPLEXITY = "2.0*N"

7 MAJOR="COLUMN"

Now we examine this file line-by-line.

 Lines 1-2: This is the header, which defines the argumentsajppear in the function to be
called by GridSolve. It resembles the original function ldeation, but GridSolve requires
a bit of extra information. For each argument, it needs toakmdhether it is modified by
the function. In this case, none of the arguments are modgi@ave declare them all &,
meaning input-only. The full range of possibilites will bepéained in more detail later. For
non-scalar arguments, we must also specify the size of gwerant in terms of some scalar
arguments. This can be a mathematical expression, as shahis iexample. Since is the
number of elementft the total vector length) andcx is the stride fodx, the total length

25

of the dx vector that must be sent to the servenimcx . Thus we declare the vectors as
dx[n*incx] anddy[n*incy]

Line 3: This line is a string describing the function.
Line 4: This line specifies the language in which the funci®implemented.

Line 5: This line specifies the libraries that need to bedihkin this case we link the ATLAS
library since it contains the implementation of ttiéot function that we want GridSolve to
call.

Line 6: This is an expression that specifies the asymptotigptexity (orbig-O bounds) for
the algorithm. Itis expressed in terms of constants andgumaents from the gsIDL function
delcaration (lines 1-2). The typical mathematical opesatoe allowed, as explained in more
detail in Sectior??.

Line 7: This line specifies whether the algorithm is row-anajr column-major. In this case
it does not really matter since it is not a matrix algorithmridSolve will automatically
transpose matrices when calling from a row-major client tmlamn-major service (or vice

versa).

10.2 Description of the gsIDL Grammar

The EBNF grammar for the gsIDL file is:

Start = IDLPARSE Problemlist

Start '= EXPREVAL TOK DimEvaluated

Identifier = IDENTIFIER

Constant == CONSTANT

StringLiteral = STRINGLITERAL

Problemlist ::= [Problemlist] Problem

Problem .= ProbSpec Identifie(™Arglist “)” Description Infolist

ProbSpec = FUNCTION Datatypg™Dim “|” “[* Dim “]”

ProbSpec = FUNCTION Datatypg”Dim “]”

ProbSpec = FUNCTION Datatype

ProbSpec = SUBROUTINE

Infolist = [Infolist | Info

Info .= Infotype “=" StringLiteral

Arglist = [[Arglist“,”] Arg]

Arg = Inout (Datatype Identifier[" Dim “]” “[* Dim “]” “ {” SpDim
“,” SpDim “,” SpDim “}” Description| Datatype Identifier [
Dim “]” “[" Dim “|” Description| Datatype Identifier [Dim

“]” Description| Datatype Identifier DescriptiohFILE_TOK
Identifier Descriptior] FILE_TOK Identifier “[" Dim “]”
Description)

SpDim = Ildentifier
Inout m= IN_-TOK
Inout == INOUT.TOK

26

Inout

Inout

Inout

Description
Datatype

Datatype

Datatype

Datatype

Datatype

Datatype

Infotype

Infotype

Infotype

Infotype

Infotype

Infotype

Infotype

Infotype
DimEvaluated

Dim
primary_expression
primary_expression
primary_expression
postfix expression
postfix expression
postfix expression
argumentexpressionist
unary expression
unary.expression
unary operator
unary operator
unary operator
unary operator
castexpression
castexpression
multiplicative_expression
additive.expression
shift_.expression

relationalexpression
equality expression

andexpression
exclusiveor_expression
inclusive.or_expression
logicalLand expression

OUT.TOK
VAROUT
WORKSPACE
[StringLiteral]
INTTOK
CHARTOK
FLOATTOK
SCOMPLEX
DCOMPLEX
DOUBLETOK
LANGUAGE
MAJOR
LIBS
INCLUDES
COMPLEXITY
PARALLEL
CODE
Identifier
expression
expression
Identifier
Constant
(" expression ¥”
primangxpression
Identifier(" “)”
Identifier(" argumentexpressiodist “)”
[argumentexpressiodist “,” | expression
postfbexpression
unargperator casexpression
w »

“w N
“won

unargxpression

(" type_specifier)" castexpression
[multiplicative_expression (¥” | “/” | “%”) | castexpression
[additive expression (4" | “—")] multiplicative_expression
[shift. expression (LEFIOP| RIGHT_OP)]

additive.expression

[relationalexpression (£”

shift_.expression

[equality expression (EQDP | NE_OP)]

relationalexpression

[and expression “&”] equality expression
exclusiveor_expression™” | andexpression

>11

LE_.OP| GE.OP)]

aun

=
= [inclusive or_expression [| exclusiveor_expression
=

logicalLand expression ANDOP| inclusive or_expression

27

logical.or_expression [logical or_expression OFOP] logical and expression

expression = logicabr_expressior “?" expression " expressior]
type_specifier = CHARTOK

type_specifier = SHORITOK

type_specifier »= INTTOK

type_specifier = LONGTOK

type_specifier = FLOATTOK

type_specifier = DOUBLETOK

As you can see from the grammar, each problem should begmtkeét problem specification
followed by a string description. After that, the problertribtites LANGUAGEMAJOR etc.) may be
specified in any order.

In the grammarWORDepresents an identifier which begins with a letter and ieicdd by
sequence of letters, digits, or underscores. It would beassgd as a regular expression as follows:

[a-zA-Z]([0-9]|[a-zA-Z]|)*

STR.CONSTis an arbitrary string enclosed with double quotes. All ttteeoterminals in the grammar
are keywords with the same name in the gsIDL.

Notice that each argument Krglist is prefaced with ahnout specifier. This describes how the
argument is to be passed to the server. the possible casgua:

* IN —input-only, allocated by the client and not modified by thedtion

OUT- output-only, allocated by the client and initialized b flanction

INOUT — input-output, allocated and initialized by the client anddified by the function

VAROUT output-only, allocated and initialized by the function

WORKSPACE this is used to represent Fortran “workspace” argumenishsou want to
leave out of the client calling sequence. These will be alied by the server and do not get
transmitted over the wire.

Most of thelnfotype keywords were described in the gsIDL example earlier. Therstrepre-
sented in the grammar are reserved for future use.

10.3 Determining the C Client Calling Sequence

In this section we will describe how to write the client codeall any gsIDL. The easiest way to un-
derstand the calling sequence for a given gsIDL is to conifpéled look at the example client code
that is generated by the GridSolve gsIDL compiler. It willi@nedPROB_NAME>_grpc_example.c ,
where<PROB_NAMEj#s the name of the service.

In general, the client call will have one argument for eadjuarent in the gsIiDL problem
specification. There are two exceptions.

1. If the argument is classified #ORKSPACEhen it is omitted from the client calling sequence.

28

2. If the problem is declared asF&NCTION(as opposed to 8UBROUTINE which has no return
value), there will be an additional argument at the end ofribvenal client calling sequence
to hold the return value. It is considered an output-onlyuargnt, so it should be passed
by reference. This is done because the GridRPC calls retstatas (or request ID for non-
blocking calls), so they cannot also return the functioatsim value.

One of the main characteristics that is relevant to deténgilow an individual argument
should be passed is whether the argument is scalar or n@ar-siédhe argument is a scalar and is
input-only, then it is passed by value. Otherwise it showddhssed by reference. If the argument
is non-scalar, then it is always passed by reference. Ormaspase iSYAROUTwhich allows the
service to return a variable-length non-scalar. In thigctiee argument should be passed as pointer-
to-pointer.

10.4 Determining the Fortran Client Calling Sequence
The NetSolve compatibility layer contains a Fortran 77 ARirtran differs from C in that all argu-

ments are passed by reference. GridSolve will handle derafing the pointers for arguments that
are expected to be passed by value, so you should just pasgthments as normal from Fortran.

29

Chapter 11

Interfacing with Batch Queues

Some machines, typically large parallel machines or ctastgan only be used by submitting the
job to a batch queue. To allow GridSolve to work on such maimve need to provide support
for batch queue submission. However, since there is a widetyaof batch queue systems, each
with their own commands and interfaces, we wanted to allagsvfdature to be customizable by the
administrator of the server to suit the specifics of thea.sit

We have defined three basic queue operations: submit, panidecancel. For each of these
operations, a script must be written to the following speatfons.

11.1 Submit Script

GridSolve will pass one argument to the submit script, wisdine name of the batch executable to
be run. You will probably need to pass this executable nantleettbatch queue submit command.
Also within the script, you should pass one argument to thehbaxecutable, which is the full path
of the request directory. You should normally @@WDsince this script would be invoked by the
service process which is already in the request directaryth®e batch executable needs to know
where to begin because after submission it may start in erdift directory.

Whatever back-end system you submit to, this script shonlg produce one line on stdout:
a job identifier that can be used by the probe and cancel saoptheck status and Kkill the job,
respectively.

GridSolve submit scripts should exit with the appropridtgis as follows:

» 0 —the job was successfully submitted

* non-zero — there was a failure submitting the job

11.2 Probe Script

GridSolve will pass one argument to the probe script, whicthé identifier of the job to probe.
This is the job identifier produced earlier by the submitgcri
GridSolve probe scripts should exit with the appropriatéust as follows:

* 0 —the job is still running

» 1 —the job has completed

30

e 2 —the job terminated abnormally

11.3 Cancel Script

Arguments: GridSolve will pass one argument to the canagdtsevhich is the identifier of the job
to kill. This is the job identifier produced earlier by the subscript.
GridSolve cancel scripts should exit with the approprigéus as follows:

» 0 —the job was successfully killed

» 1 —failed to kill the job

11.4 Examples
11.4.1 gsIDL Specification

Before a service can be batch-enabled, the names of the tsydnaobe, and cancel scripts must be
specified in the gsIDL for the service (and then recompilesberice). An example gsIDL file
follows.

SUBROUTINE batch_test int(INOUT int x[n], IN int n, IN int d elay)
"Sorts an array of integers."

LANGUAGE = "C"

LIBS = "-L$(top_builddir)/problems/sorting -Isorting"

COMPLEXITY = "n"

MAJOR="ROW"

BATCH_SUBMIT="$(top_builddir)/examples/batch_script s/gs_dummy_submit"
BATCH_PROBE="$(top_builddir)/examples/batch_scripts lgs_dummy_probe"
BATCH_CANCEL="$(top_builddir)/examples/batch_script s/gs_dummy_cancel"

As you can see from this example, the batch scripts are spebaifithe service attribute section
of the gsIDL file. Aside from those attributes, the file doesmeed to be modified.

11.4.2 Example Submit Script

In this example, you can see that the batch system requirgscésscript instead of a binary. So, in
this submit script, we create the batch script with someudefalues. In this case the actual submit
command prints only the job identifier, so we do not need tsg#re output.

TMP_SCRIPT=gs_tmp_script
fbin/rm -f ${TMP_SCRIPT}

cat << EOF > ${TMP_SCRIPT}
#l/bin/bash

#PBS -l nodes=1:ppn=2

#PBS -l walltime=01:00:00

31

foo=\'cat \$PBS_NODEFILE | awk -F: {print \$1}\'
ssh \${foo} $1 $PWD
EOF

gsub ${TMP_SCRIPT}

11.4.3 Example Probe Script

In this example, the batch queue has a commaedjob to get the status of a previously submit-
ted job. We use this information to determine the proper s=itus.

TRACEJOB='which tracejob’

if gstat $1 >& /dev/null; then
exit 0
else
if ["${TRACEJOB}" = "™]; then
exit 1
else
exit_status="tracejob $1 | egrep Exit_status | cut -d '=" -f 2"
if ["${exit_status}" = "0"]; then
exit 1
else
exit 2
fi
fi
fi

11.4.4 Example Cancel Script

Cancelling a job is simple since the batch queue system masiead to do it. We just need to make
sure to exit with the appopriate status.

if qdel $1 >& /dev/null; then
exit 0

else
exit 1

fi

32

Chapter 12

Distributed Storage Infrastructure (DSI)
In GridSolve

12.1 DSI Introduction

The Distributed Storage Infrastructure (DSI) is an attetoptards achieving coscheduling of the
computation and data movement over the GridSolve systemDBi API helps the user in control-
ling the placement of data that will be accessed by a GridSsévrvice. This is useful in situations
where a given service accesses a single block of data a nwhtieres. Instead of multiple trans-
missions of the same data from the client to the server, thief@®ure helps to transfer the data
from the client to a storage server just once, and relatigchlsap multiple transmissions from the
storage server to the computational server. Thus the gr&s®infeature helps GridSolve to oper-
ate in a cache-like setting. Presently, only Internet Bearigy Protocol (IBP) is used for providing
the storage service. In the future, we hope to integrater @iimonly available storage service
systems.

12.2 Using DSI
To use DSI, one should enable the DSI feature both at the GlidS$lient and the server. Type
% ./configure --with-dsi-ibp=IBP_DIR

during the initial configure of GridSolve. Here IBPIR denotes the location of the IBP direc-
tory. This is specifically the directory of the IBP full ditution downloadable from the IBP web
site http://loci.cs.utk.edu/ibp/ . Note: When using IBP in a server pool that has both IBP
enabled servers and those that are not IBP enabled, onedalmrithe assigned server feature to
ensure that the problem submission goes to a server withhaBled.

12.3 DSI API

The DSI API is modeled after the UNIX file manipulation comrdar(open, close etc.) with a
few extra parameters that are specific to the concepts of Dfd.section provides the syntax and
semantics of the different DSI calls available to the Grid8aser.

33

12.3.1 grpcdsi_open

This function is used for allocating a chunk of storage inlBle storage.

grpc_error_t grpc_dsi_open(DSI_FILE **rfile, char* host _hame, int flag,
int permissions, int size, dsi_type storage_system);

Parameters:
 ffle — Upon return, contains a pointer to the DSl file.
* host _name — Name of the host where the IBP server resides.

» flag - This flag has the same meaning as the flag in open() calls ip&sif®allyO_CREAT
is used for creating a DSl file.

» permissions — While creating the file wittD_CREATflag, the user can specify the permis-
sions for himself and others. The permissions are simildineoones used in UNIX. Hence
if the user wants to set read and write permissions for hinasel only read permissions for
others, he would call grpdsiopen with 644 as the value for the permissions.

» size — Represents the maximum length of the DSI file. Write or rgaerations over this
size limit will return an error.

 storage _system — At present, only IBP is supported.

On success, returfdRPCNQERRORON failure, return&SRPCOTHERERRORCODEas the major
error code with one of the following minor error codes.

» GRPCDSI_UNKNOWRILE - If the file does not exist and if the file is opened withOUCREAT
» GRPCDSI _ALLOCATEERROR- Error while allocating IBP storage.

» GRPCDSI_DISABLED - If DSl is not enabled in the GridSolve configuration.

12.3.2 grpcdsi_close
This function is used for closing a DSl file.
grpc_error_t grpc_dsi_close(DSI_FILE* dsi_file);
Parameters:
* dsi _file — Pointer to the DSI file.

On success returfBRPCNQERROROn failure, return&SRPCOTHERERRORCODEas the major
error code with one of the following minor error codes.

* GRPCDSI _MANAGEERROR- Error in IBP internals while closing.

e GRPCDSI _DISABLED - If DSl is not enabled in the GridSolve configuration.

34

12.3.3 grpcdsi_write _vector

This function is used for writing a vector of a particular atgpe to a DSI file.

grpc_error_t grpc_dsi_write_vector(DSI_OBJECT **robje ct, DSI_FILE* dsi_file,
void* data, int count, int data_type);

Parameters:

 robject — Upon return contains a pointer to the DSI object createthi®rector.
e dsi file —The name of the DSI file where the vector will be written.

» data — Vector to write to the DSI storage.

e count — Number of elements in the vector.

 data _type — One of GridSolve data types.

On success returfBRPCNQERROROn failure, return&SRPCOTHERERRORCODEas the major
error code with one of the following minor error codes.

» GRPCDSI_STOREERROR- Error while storing the vector in IBP.
» GRPCDSI_EACCES- Not enough permissions for writing to the DSl file.

» GRPCDSI _DISABLED - If DSl is not enabled in the GridSolve configuration.

12.3.4 grpcdsi_write _matrix

Same functionality and return values as ggst write_vector() except this function is used to write
matrix of rows rows andcols columns.

grpc_error_t grpc_dsi_write_matrix(DSI_OBJECT **robje ct, DSI_FILE* dsi_file, void* data,
int rows, int cols, int data_type);

12.3.5 grpcdsi_read_vector

This function is used to read a vectoramiunt items.

grpc_error_t grpc_dsi_read vector(DSI_OBJECT* dsi_obj , void* data, int count,
int data_type, int *bytes_read);

Parameters:

 dsi _obj — Pointer to the DSI object that contains the data to read.
» data — Actual vector to read.

» count — Number of elements of the vector to read.

 data _type — One of NetSolve data types.

35

* bytes _read — Upon return, contains the number of bytes read.

On success returiBRPCNQERROROn failure, return&SRPCOTHERERRORCODEas the major
error code with one of the following minor error codes.

» GRPCDSI_LOADERROR- Error while loading the vector from IBP.
* GRPCDSI_EACCES- Not enough permissions for reading from the DSl file.
» GRPCDSI _DISABLED - If DSl is not enabled in the GridSolve configuration.

12.3.6 grpcdsi_read_matrix

Same functionality and return values as grsi readvector() except grpasiread matrix() is used
to read matrix ofows rows andcols columns.

grpc_error_t grpc_dsi_read matrix(DSI_OBJECT* dsi_obj , Void* data, int rows, int cols,
int data_type, int *bytes_read);

12.4 DSI Example

This section shows two example programs. Both programsmtallector_add5, which adds 5 to
every element of the input vector and stores the result imooutput vector. The first example
shows a standard call and the second example shows the Di$¢éénarsion.

12.4.1 Standard Example

#include <stdio.h>
#include <stdlib.h>

#include "grpc.h"

int
main(int argc, char *argv[])
{
int int_vec_in[] = {93, 120, 84, 57, 147, 138, 66, 12, 88, 2},
int *int_vec_out, i, n;
grpc_function_handle_t handle;
grpc_error_t status;

n = sizeof(int_vec_in) / sizeof(*int_vec_in);

int_vec_out = (int *)malloc(n * sizeof(int));

if(grpc_initialize(NULL) '= GRPC_NO_ERROR) {
grpc_perror("grpc_initialize™);
exit(EXIT_FAILURE);

}

36

if(grpc_function_handle_default(&handle, "int_vector _add5") '= GRPC_NO_ERROR) {
fprintf(stderr,"Error creating function handle\n");
exit(EXIT_FAILURE);

}
status = grpc_call(&handle, n, int_vec in, int_vec_out);

if(status '= GRPC_NO_ERROR) {
printf("GRPC error status = %d\n", status);
grpc_perror("grpc_call™);
exit(status);

}

for(i=0; i < n; i++) {
if(int_vec_in[i] != int_vec_out[i] - 5) {
fprintf(stderr, "Bad results in integer list\n");
exit(EXIT_FAILURE);
}
}

grpc_finalize();

printf("Test successful\n®);
exit(EXIT_SUCCESS);

}

12.4.2 DSl Example

#include <stdio.h>
#include <stdlib.h>

#include "grpc.h"

int
main(int argc, char *argv[])
{
int int_vec_in[]] = {93, 120, 84, 57, 147, 138, 66, 12, 88, 2};
int *int_vec_out, i, n;
grpc_function_handle_t handle;
grpc_error_t status;
DSI_OBJECT *int_vec;
DSI_FILE *dsi_file;

n = sizeof(int_vec_in) / sizeof(*int_vec_in);
int vec_out = (int *)malloc(n * sizeof(int));

37

if(grpc_initialize(NULL) '= GRPC_NO_ERROR) {
grpc_perror("grpc_initialize™);
exit(EXIT_FAILURE);

}

if(grpc_dsi_open(&dsi_file, "localhost", O_CREAT|O_RD
= GRPC_NO_ERROR)
{
fprintf(stderr, "Error opening DSI file.\n");
exit(EXIT_FAILURE);

}

if(grpc_dsi_write_vector(&int_vec, dsi_file, int vec_
= GRPC_NO_ERROR)
{
fprintf(stderr, "Error writing in_vec to DSI file.\n");
exit(EXIT_FAILURE);

}

if(grpc_function_handle_default(&handle, "int_vector
fprintf(stderr,"Error creating function handle\n");
exit(EXIT_FAILURE);

}
status = grpc_call(&handle, n, int_vec, int vec_out);

if(status !'= GRPC_NO_ERROR) {
printf("GRPC error status = %d\n", status);
grpc_perror("grpc_call™);
exit(status);

}

for(i=0; i < n; i++) {
if(int_vec_in[i] != int_vec_out[i] - 5) {
fprintf(stderr, "Bad results in integer list\n");
exit(EXIT_FAILURE);
}
}

grpc_dsi_close(dsi_file);
grpc_finalize();

printf("Test successful\n");
exit(EXIT_SUCCESS);

38

WR, 644, 30000, GS_DSI_IBP)

in, n, GS_INT)

_adds") !

GRPC_NO_ERROR) {

Chapter 13

GridSolve Profiling Interface

13.1 Introduction

The profiling interface is a very simple mechanism for prowydspecific timing information about
the various aspects of a complete job submission. We deselihyis to be used internally to compare
GridSolve with NetSolve, but it may be of some interest to esers as well. Since the NetSolve
and GridSolve versions use the same fields, some of them mdermrelevant to both systems, so
such fields will always show an elapsed time of 0 in GridSolve.

13.2 Using the Profiling Interface

To use the profiling interface, first declare a variable oetyjpc _profile _t. This structure should
be passed tgrpc _profile() before using any of the GridRPC call functions. When making
several non-blocking calls, make sure not to pass the sametge togrpc _profile() or the
timing information from different calls will be overwritite

grpc_error_t grpc_profile(grpc_profile_t *prof)
If successful, this function returf@RPCNQERRORON failure, it will return
e GRPCNOTINITIALIZED - if GridRPC isn't initialized yet.

* GRPCOTHERERRORCODE(with minor errno: GRPCPROFILING_NOTENABLED if profiling
was not enabled during configuration (see Seciidh

After the service has completed and the results have begeveat, the profiling information
can be accessed. The available fields, which are all doubkgspon floating point values, follow
below.

e proxy _start —unused in GridSolve

e object _init —unused in GridSolve

 agent _comm- the time to contact the agent and retrieve the server list
» send _input —the time to send all the input data

 job _complete —unused in GridSolve

e recv _output — the time to receive the output data

39

13.3 Example
grpc_profile_t gsprof;

prof_enabled = grpc_profile(&gsprof) == GRPC_NO_ERROR;
status = grpc_call(&andle, x, i);
if(prof_enabled)

printf("%d: %g %g %g %g %g %g\n",(int)(i*sizeof(x[0])),

gsprof.proxy_start, gsprof.object_init, gsprof.agent_ comm,
gsprof.send_input, gsprof.job_complete, gsprof.recv_o utput);

40

Chapter 14

Using the NAT Proxy

As the rapid growth of the Internet began depleting the supplP addresses, it became evident that
some immediate action would be required to avoid completdiRess depletion. The IP Network
Address TranslatorH~94 is a short-term solution to this problem. Network AddresanElation
allows reuse of the same IP addresses on different subnessieducing the overall need for unique
IP addresses.

As beneficial as NATs may be in alleviating the demand for IBreskes, they pose many
significant problems to developers of distributed applices such as GridSolveé/[oo0Z. Some of
the problems as they pertain to GridSolve include the fahgouw

 |P addresses are not unigue — In the presence of a NAT, a lfhaafdress may not be globally
unique. Typically the addresses used behind the NAT are dmoerof several blocks of IP ad-
dresses reserved for use in private networks, though thigtistrictly required. Consequently
any system that assumes that an IP address can serve asjhe ideintifier for a component
will encounter problems when used in conjunction with a NAT.

 |P address-to-host bindings may not be stable — This hagasiobnsequences to the first
issue in that GridSolve can no longer assume that a given dRessl corresponds uniquely
to a certain component. This is because, among other reasen®AT may change the
mappings.

» Hosts behind the NAT may not be contactable from outsideis dirrently prevents all Grid-
Solve components from existing behind a NAT because they alluse capable of accepting
incoming connections.

* NATs may increase network failures — This implies that Gotve needs more sophisticated
fault tolerance mechanisms to cope with the increased émxyuof failures in a NAT envi-
ronment.

To address these issues we have developed a NAT-toleramigoications framework for Grid-
Solve. To avoid problems related to potential duplicatibiPaaddresses, the GridSolve components
will be identified by a globally unique identifier, in this @a 64-bit random number. In a sense,
the component identifier is a network address that is layengdp of the real network address such
that a component identifier is sufficient to uniquely idgntahd locate any GridSolve component,
even if the real network addresses are not unique. This i®wbiat similar to a machine having

41

an IP address layered on top of its MAC address in that theogobto obtain the MAC address
corresponding to a given IP address is abstracted in a l@ayer.|

An important aspect to making this new communications medaek is theproxy, which is a
component that will allow servers to exist behind a NAT. ®ircserver cannot accept unsolicited
connections from outside the private network, it must fiegfister with a proxy. The proxy acts on
behalf of the component behind the NAT by accepting incontioagnections destined for it. The
component behind the NAT keeps the connection with the papgn as long as possible since
it can only be contacted by other components while it has &r@oconnection established with
the proxy. To maintain good performance, the proxy only érasithe header of the connection
establishment message and uses a simple table-based lmokiepermine where to forward the
connection. Furthermore, to prevent the proxy from beingsatl, authentication can be enforced.

Since NATs may introduce more frequent network failureshaee implemented a protocol to
allow GridSolve components to reconnect to the system amiéve the results later. This allows
the servers to store the results of a computation to bevettiat some time later when the network
problem has been resolved. Additionally, this would alloaliant to submit a problem, break the
connection, and reconnect later at a more convenient timetiieve the results, even perhaps from
a different machine than the one used to submit the problem.

14.1 Starting the NAT Proxy and Proxied Server

The NAT Proxy may be started anywhere on the accessible &ttle DIAT. By accessible, we mean
that a client should be able to establish a connection to ithveyp The client may still have to go
through a NAT on its side, but that is fine as long as it is gomgugh the outbound direction. The
NAT proxy is located in theééGRIDSOLVE_ROOT/src/proxy directory. To start it, simply execute
the following command:

% proxy_server

Once the proxy has been started, you may start the servexiktg behind the NAT. Since the server
needs to request that the proxy handle incoming connectjonsneed to specify the location of the
proxy before starting the server:

% setenv GRIDSOLVE_PROXY foo.cs.utk.edu:8888

The other components do not need any modification to comrateniga the proxy.

42

Bibliography

[AAB T02] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Mil] K. Seymour, K. Sagi,

[EF94]

[Moo02]

[TMWO2]
[Wol96]

Z. Shi, and S. Vadhiyar. Users’ Guide to NetSolve V1.4.1olative Computing Dept.
Technical Report ICL-UT-02-05, University of TennesseapKville, TN, June 2002.

K. Egevang and P. Francis. The IP Network Address Jlaaor (NAT). RFC 1631,
May 1994,

K. Moore. Recommendations for the Design and Imm@etation of NAT-Tolerant
Applications. Internet-draft, February 2002. Work in Pexs.

Inc. The Math Works MATLAB Reference Guide. 1992.

S. Wolfram. The Mathematica Book, Third Edition. Wolfram Median, Inc. and Cam-
bridge University Press, 1996.

43

Appendix A

Environment Variables

TableA.1 has a summary of the environment variables used by GridSthleeeomponents to which
they are relevant, and the default value used if not set. Metailed descriptions appear after the
table.

Environment Variable Relevant To Default
GRIDSOLVE_AGENT_PORT Client, Server, Agent 9876
GRIDSOLVE_AGENT Client, Server none
GRIDSOLVE_PROXY Client, Server none
GRIDSOLVE_ROOT Server path detected during configure
GRIDSOLVE_ARCH Server arch string detected during configure
GRIDSOLVE_HTTPD_PORT Agent 8080
GRIDSOLVE_SENSOR_PORT Agent 9988
GRIDSOLVE_SERVER_PORT Agent 9000
GRIDSOLVE_KEYTAB Proxy none
GRIDSOLVE_USERS Proxy none
PROXY_LISTEN_PORT Proxy 8888

Table A.1: Summary of GridSolve Environment Variables

» GRIDSOLVEAGENTPORT- tells the agent the port on which it should listen and téksdlient
or server the port on which it should try to contact the agent.

* GRIDSOLVEAGENT- the host name of the GridSolve agent.
* GRIDSOLVEPROXY-the host name and port of the proxy server. For examplejsglve.cs.utk.edu:8888”.

» GRIDSOLVEROOQT- the full path to the root of the GridSolve installation. 3 hiormally does
not need to be set since it can be determined during configardf you want to run out of a
different directory than the code was built, you must set grivironment variable.

» GRIDSOLVEARCH- the specification string for this architecture. This ndiyndoes not need
to be set since it can be determined during configuration.

* GRIDSOLVEHTTPDPORT- the port on which the HTTP daemon should listen.

44

GRIDSOLVESENSORPORT- the port on which the monitoring sensor should listen.
GRIDSOLVESERVERPORT- the port on which the server should listen.

GRIDSOLVEKEYTAB— name of the file containing the GridSolve service principghis is
used for Kerberos authentication to the proxy.

GRIDSOLVEUSERS— name of the file containing the authorized user list. Thiased for
Kerberos authentication to the proxy.

PROXYLISTEN _PORT- the port on which the proxy should listen.

45

Appendix B

GridRPC API Specification

B.0.1 Initializing and Finalizing Functions

grpc_error_t grpc_initialize(char * config_file_name);
grpc_error_t grpc_finalize();

B.0.2 Remote Function Handle Management Functions

grpc_error_t grpc_function_handle_default(grpc_funct ion_handle_t * handle,
char * func_name);

grpc_error_t grpc_function_handle_init(grpc_function _handle_t * handle,
char * host_name, char * func_name);

grpc_error_t grpc_function_handle_destruct(grpc_func tion_handle_t * handle);

grpc_error_t grpc_get_handle(grpc_function_handle_t * *handle, int sessionld);

B.0.3 GridRPC Call Functions

grpc_error_t grpc_call(grpc_function_handle_t *handle o)
grpc_error_t grpc_call_async(grpc_function_handle_t * handle,
grpc_sessionid t *, ...);

B.0.4 Asynchronous GridRPC Control Functions

grpc_error_t grpc_probe(int sessionID);

grpc_error_t grpc_probe_or(grpc_sessionid_t *idArray, size_t length,
grpc_sessionid_t *idPtr);

grpc_error_t grpc_cancel(int sessionID);

grpc_error_t grpc_cancel_all(void);

B.0.5 Asynchronous GridRPC Wait Functions

grpc_error_t grpc_wait(grpc_sessionid_t sessionID);

grpc_error_t grpc_wait_and(grpc_sessionid_t *idArray, size_t length);

grpc_error_t grpc_wait_or(grpc_sessionid_t *idArray, s ize_t length,
grpc_sessionid _t *idPtr);

grpc_error_t grpc_wait_all(void);

46

grpc_error_t grpc_wait_any(grpc_sessionid_t *idPtr);

B.0.6 Error Reporting Functions

char * grpc_error_string(grpc_error_t error_code);
grpc_error_t grpc_get_error(grpc_sessionid_t sessionl
grpc_error_t grpc_get failed_sessionid(grpc_sessioni

a7

D);
d_t *sessionID);

Appendix C

NetSolve Compatibility

GridSolve is designed as a replacement for NetSolve, bbedtrhe of this release, there are several
NetSolve features that have not been implemented in GnéSat. At the same time, GridSolve
offers several enhancements not found in NetSolve. In fipgdix we outline these incompatibil-
ities and enhancements.

C.1 Incompatibilites

» API — GridSolve does not include the sequencing API.

» Backend — Support for different Grid services such as Globus, Caoralat LFC has not been
implemented as part of GridSolve, but nothing prevents yomnfwriting a wrapper that calls
whatever you want.

» Clients— Mathematica, Octave, and Excel interfaces are not sugghartGridSolve.

C.2 GridSolve Enhancements

» NAT Tolerance — GridSovle includes a NAT proxy that can allow servers tolvahind a NAT.
The original NetSolve client protocol has been modified s ttients can easily run behind
NATs (without requiring a proxy).

» Performance — Instead of XDR, GridSolve usesReceiver Makes Right protocol for data
transfer. This requires data conversion only on the recgiend. Also we have incorporated
a more efficient matrix transpose routine for C to Fortratirggl(or vice versa). GridSolve
also provides a faster return from non-blocking calls bkifug a separate process to handle
the transmission of the input data.

» Disconnect — For very long running jobs, GridSolve provides the optiordisconnect from
the server and pick the results up later, even from a differechine.

* IDL — The language for specifying the calling sequence of ameutd be integrated into
GridSolve has been streamlined. We provideloekspace argument type, which specifies
that the server should allocate memory for the routine, todbés not need to be transferred
over the wire. We provide thearout argument type, which allows variable-length output

48

arguments to be returned by the service routine. We allovtrar mathematical expressions
to be used to specify the sizes of non-scalar arguments aspketofy the complexity of the
algorithm.

Server — Services are compiled to statically-linked executabdesthere are no issues with
library paths or various flags for different linkers. Thevegs are not linked in with the

server binary itself, so to add a new service just requirddibg the new service and placing
it in the proper subdirectory. The server does not need tcebtanted to enable the new
problem.

Client Criteria — To allow filtering the list of servers returned by the agehg client can
specify the criteria that it wants satisfied. The criteria ba specified as a boolean expression
(e.g.MEMORY > 1024

49

	Overview of GridSolve
	An Introduction to Distributed Computing
	What is GridSolve?
	Background
	Overview and Architecture
	Who is the GridSolve User?

	Downloading, Installing, and Testing
	Installation on Unix Systems
	Testing the Unix Installation
	Installation on Windows Systems
	Testing the Windows installation
	Using GridSolve from Windows Matlab

	GridRPC API
	Introduction
	Function Handles and Session IDs
	Initializing and Finalizing Functions
	Remote Function Handle Management Functions
	GridRPC Call Functions
	Asynchronous GridRPC Control Functions
	Asynchronous GridRPC Wait Functions
	Error Reporting Functions

	NetSolve Compatibility Interface
	Introduction

	Matlab Interface
	Introduction
	Building and Enabling the Matlab Interface
	Matlab GridSolve API
	Example Matlab session

	GridSolve Request Farming
	Introduction
	Calling Farming in C
	An example
	Catching errors
	Farming in Matlab

	Running the GridSolve Agent
	Running the GridSolve Server
	The Server Configuration File
	Server Restrictions
	Adding Services to a GridSolve Server

	GridSolve Management Tools for Administrators
	GridSolve Interface Definition Language
	gsIDL Example
	Description of the gsIDL Grammar
	Determining the C Client Calling Sequence
	Determining the Fortran Client Calling Sequence

	Interfacing with Batch Queues
	Submit Script
	Probe Script
	Cancel Script
	Examples
	gsIDL Specification
	Example Submit Script
	Example Probe Script
	Example Cancel Script

	Distributed Storage Infrastructure (DSI) in GridSolve
	DSI Introduction
	Using DSI
	DSI API
	grpc_dsi_open
	grpc_dsi_close
	grpc_dsi_write_vector
	grpc_dsi_write_matrix
	grpc_dsi_read_vector
	grpc_dsi_read_matrix

	DSI Example
	Standard Example
	DSI Example

	GridSolve Profiling Interface
	Introduction
	Using the Profiling Interface
	Example

	Using the NAT Proxy
	Starting the NAT Proxy and Proxied Server

	Environment Variables
	GridRPC API Specification
	Initializing and Finalizing Functions
	Remote Function Handle Management Functions
	GridRPC Call Functions
	Asynchronous GridRPC Control Functions
	Asynchronous GridRPC Wait Functions
	Error Reporting Functions

	NetSolve Compatibility
	Incompatibilites
	GridSolve Enhancements

