
Users’ Guide to GridSolve
Version 0.15

Jack Dongarra, Keith Seymour, Asim YarKhan

Innovative Computing Laboratory
Department of Computer Science

University of Tennessee

May 2006

Users’ Guide to GridSolve: (http://icl.cs.utk.edu/gridsolve/)
by Sudesh Agrawal, Jack Dongarra, Kiran Sagi, Keith Seymour, Asim YarKhan

Copyright 1995-2006 by The GridSolve Project, Innovative Computing Laboratory, Department
of Computer Science, University of Tennessee

Legal Restrictions

Allowed Usage: Users may use GridSolve in any capacity they wish. We only ask that proper
credit and citations be used when the GridSolve system is being leveraged in other software sys-
tems.

Redistribution : Users are allowed to freely distribute the GridSolve system in unmodified form.
At no time is a user to accept monetary or other compensation for redistributing parts or all of the
GridSolve system.

Modification of Code: Users are free to make whatever changes they wish to the GridSolve system
to suit their personal needs.We mandate, however, that you clearly highlight which portions are of
the original system and which are a result of the third-partymodification.

Warranty Disclaimer : USER ACKNOWLEDGES AND AGREES THAT: (A) NEITHER THE
GridSolve TEAM NOR THE BOARD OF REGENTS OF THE UNIVERSITY OF TENNESSEE
SYSTEM (REGENTS) MAKE ANY REPRESENTATIONS OR WARRANTIES WHATSOEVER
ABOUT THE SUITABILITY OF GridSolve FOR ANY PURPOSE; (B) GridSolve IS PROVIDED
ON AN “AS IS, WITH ALL DEFECTS” BASIS WITHOUT EXPRESS OR IMPLIEDWARRANTIES,
INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT; (C) NEITHER THE GridSolve TEAMNOR THE RE-
GENTS SHALL BE LIABLE FOR ANY DAMAGE OR LOSS OF ANY KIND ARISING OUT
OF OR RESULTING FROM USER’S POSSESSION OR USE OF GridSolve (INCLUDING DATA
LOSS OR CORRUPTION), REGARDLESS OF WHETHER SUCH LIABILITY IS BASED IN
TORT, CONTRACT, OR OTHERWISE; AND (D) NEITHER THE GridSolveTEAM NOR THE
REGENTS HAVE AN OBLIGATION TO PROVIDE DEBUGGING, MAINTENANCE, SUP-
PORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS EXCEPT WHERE EXPLICIT
WRITTEN ARRANGEMENTS HAVE BEEN PRE-ARRANGED.

Damages Disclaimer: USER ACKNOWLEDGES AND AGREES THAT IN NO EVENT WILL
THE GridSolve TEAM OR THE REGENTS BE LIABLE TO USER FOR ANY SPECIAL, CON-
SEQUENTIAL, INDIRECT OR SIMILAR DAMAGES, INCLUDING ANY LOST PROFITS OR
LOST DATA ARISING OUT OF THE USE OR INABILITY TO USE GridSolveEVEN IF THE
GridSolve TEAM OR THE REGENTS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

Attribution Requirement : User agrees that any reports, publications, or other disclosure of results
obtained with GridSolve will attribute its use by an appropriate citation. The appropriate reference
for GridSolve is “The GridSolve Software Program (GridSolve) was developed by the GridSolve
Team at the Computer Science Department of the University ofTennessee, Knoxville. All rights,

ii

title, and interest in GridSolve are owned by the GridSolve Team.”

Compliance with Applicable Laws: User agrees to abide by copyright law and all other appli-
cable laws of the United States including, but not limited to, export control laws.

iii

Contents

1 Overview of GridSolve 1
1.1 An Introduction to Distributed Computing. 1
1.2 What is GridSolve?. 1

1.2.1 Background. 1
1.2.2 Overview and Architecture. 2
1.2.3 Who is the GridSolve User?. 3

2 Downloading, Installing, and Testing 4
2.1 Installation on Unix Systems. 4
2.2 Testing the Unix Installation. 5
2.3 Installation on Windows Systems. 6
2.4 Testing the Windows installation. 7
2.5 Using GridSolve from Windows Matlab. 7

3 GridRPC API 8
3.1 Introduction . 8
3.2 Function Handles and Session IDs. 8
3.3 Initializing and Finalizing Functions. 8
3.4 Remote Function Handle Management Functions. 8
3.5 GridRPC Call Functions. 9
3.6 Asynchronous GridRPC Control Functions. 9
3.7 Asynchronous GridRPC Wait Functions. 9
3.8 Error Reporting Functions. 10

4 NetSolve Compatibility Interface 11
4.1 Introduction . 11

5 Matlab Interface 12
5.1 Introduction . 12
5.2 Building and Enabling the Matlab Interface. 12
5.3 Matlab GridSolve API . 12
5.4 Example Matlab session. 13

6 GridSolve Request Farming 14
6.1 Introduction . 14
6.2 Calling Farming in C. 14
6.3 An example. 15

iv

6.4 Catching errors. 16
6.5 Farming in Matlab . 16

7 Running the GridSolve Agent 17

8 Running the GridSolve Server 18
8.1 The Server Configuration File. 19
8.2 Server Restrictions. 19
8.3 Adding Services to a GridSolve Server. 20

9 GridSolve Management Tools for Administrators 21

10 GridSolve Interface Definition Language 25
10.1 gsIDL Example. 25
10.2 Description of the gsIDL Grammar. 26
10.3 Determining the C Client Calling Sequence. 28
10.4 Determining the Fortran Client Calling Sequence. 29

11 Interfacing with Batch Queues 30
11.1 Submit Script. 30
11.2 Probe Script. 30
11.3 Cancel Script. 31
11.4 Examples . 31

11.4.1 gsIDL Specification . 31
11.4.2 Example Submit Script. 31
11.4.3 Example Probe Script. 32
11.4.4 Example Cancel Script. 32

12 Distributed Storage Infrastructure (DSI) in GridSolve 33
12.1 DSI Introduction . 33
12.2 Using DSI. 33
12.3 DSI API . 33

12.3.1 grpcdsi open . 34
12.3.2 grpcdsi close. 34
12.3.3 grpcdsi write vector . 35
12.3.4 grpcdsi write matrix . 35
12.3.5 grpcdsi readvector . 35
12.3.6 grpcdsi readmatrix . 36

12.4 DSI Example . 36
12.4.1 Standard Example. 36
12.4.2 DSI Example. 37

13 GridSolve Profiling Interface 39
13.1 Introduction. 39
13.2 Using the Profiling Interface. 39
13.3 Example. 40

v

14 Using the NAT Proxy 41
14.1 Starting the NAT Proxy and Proxied Server. 42

A Environment Variables 44

B GridRPC API Specification 46
B.0.1 Initializing and Finalizing Functions. 46
B.0.2 Remote Function Handle Management Functions. 46
B.0.3 GridRPC Call Functions. 46
B.0.4 Asynchronous GridRPC Control Functions. 46
B.0.5 Asynchronous GridRPC Wait Functions. 46
B.0.6 Error Reporting Functions. 47

C NetSolve Compatibility 48
C.1 Incompatibilites. 48
C.2 GridSolve Enhancements. 48

vi

List of Figures

1.1 Overview of GridSolve. 2

vii

Chapter 1

Overview of GridSolve

1.1 An Introduction to Distributed Computing

The efficient solution of large problems is an ongoing threadof research in scientific computing.
An increasingly popular method of solving these types of problems is to harness disparate computa-
tional resources and use their aggregate power as if it were contained in a single machine. This mode
of using computers that may be distributed in geography, as well as ownership, has been termed Dis-
tributed Computing. Some of the major issues concerned withDistributed Computing are resource
discovery, resource allocation and resource management, fault-tolerance, security and access con-
trol, scalability, flexibility and performance. Various organizations have developed mechanisms that
attempt to address these issues, each with their own perspectives of how to resolve them.

1.2 What is GridSolve?

GridSolve (http://icl.cs.utk.edu/gridsolve) is an example of a Distributed Computing system that
hopes to present functionalities and features that a wide variety of scientists will find highly useful
and helpful.

1.2.1 Background

Various mechanisms have been developed to perform computations across diverse platforms. The
most common mechanism involves software libraries. Unfortunately, the use of such libraries
presents several difficulties. Some software libraries arehighly optimized for only certain plat-
forms and do not provide a convenient interface to other computer systems. Other libraries demand
considerable programming effort from the user. While several tools have been developed to alleviate
these difficulties, such tools themselves are usually available on only a limited number of computer
systems and are rarely freely distributed. Matlab [TMW92] and Mathematica [Wol96] are examples
of such tools. These considerations motivated the establishment of the GridSolve project. The basic
philosophy of GridSolve is to provide a uniform, portable and efficient way to access computational
resources over a network.

1

Figure 1.1: Overview of GridSolve

1.2.2 Overview and Architecture

The GridSolve project is being developed at the University of Tennessee’s Computer Science De-
partment. It provides remote access to computational resources, both hardware and software. Built
upon standard Internet protocols, like TCP/IP sockets, it is available for all popular variants of
the UNIX™ operating system, and parts of the system are available for the Microsoft Windows
2000™ and Windows XP™ platforms. The GridSolve system is comprised of a set of loosely
connected machines. By loosely connected, we mean that these machines are on the same local,
wide or global area network, and may be administrated by different institutions and organizations.
Moreover, the GridSolve system is able to support these interactions in a heterogeneous environ-
ment, i.e. machines of different architectures, operatingsystems and internal data representations
can participate in the system at the same time.

Figure1.1shows the global conceptual picture of the GridSolve system. In this figure, we can
see the three major components of the system: theclient, theagent, and theservers (computational
or software resources). GridSolve and systems like it are often referred to as Grid Middleware.
GridSolve acts as a glue layer that brings the application oruser together with the hardware and/or
software it needs to complete useful tasks. At the top tier, the GridSolve client library is linked in
with the user’s application. The application then makes calls to GridSolve’s application program-
ming interface (API) for specific services. Through the API,GridSolve client-users gain access to
aggregate resources without needing to know anything aboutcomputer networking or distributed
computing. In fact, the user does not even have to know remoteresources are involved. The Grid-
Solve agent maintains a database of GridSolve servers alongwith their capabilities (hardware per-
formance and allocated software) and dynamic usage statistics. It uses this information to allocate
server resources for client requests. The agent finds servers that will service requests the quick-
est, balances the load amongst its servers and keeps track offailed ones. The GridSolve server is

2

a daemon process that awaits client requests. The server canrun on single workstations, clusters
of workstations, symmetric multi-processors or machines with massively parallel processors. A
key component of the GridSolve server is a source code generator which parses a GridSolve Inter-
face Definition Language (gsIDL) file. This gsIDL contains information that allows the GridSolve
system to create new modules and incorporate new functionalities. In essence, the gsIDL defines
a wrapper that GridSolve uses to call functions being incorporated. The (hidden) semantics of a
GridSolve request are:

1. Client contacts the agent for a list of capable servers.

2. Client contacts server and sends input parameters.

3. Server runs appropriate service.

4. Server returns output parameters or error status to client.

From the user’s perspective, the call to GridSolve acts justlike the call to the original function.

1.2.3 Who is the GridSolve User?

There are two types of GridSolve users. The first type of user is one who installs and accesses
only the client interface(s) and utilizes existing pools ofresources (agent(s) and server(s)). The
second type of GridSolve user installs and administrates his own GridSolve system (client, agent(s),
server(s)), and potentially enables his software to be usedby GridSolve. This Users’ Guide ad-
dresses the needs of both types of users. Note that the term “administrates” or “administrator” here
simply refers to the person setting up and maintaining the GridSolve agent and server components
– no superuser privileges are needed to install or use any component of the GridSolve system.

3

Chapter 2

Downloading, Installing, and Testing

The GridSolve client software is available for UNIX and UNIX-like operating systems and Win-
dows environments. All of the client, agent, and server software is bundled into one tar-gzipped
file for UNIX-like operating systems. There is a separate distribution file for the Windows client.
No root/superuser privileges are needed to install or use any component of the GridSolve system.
GridSolve uses autoconf to create a build environment that is similar to most other Open Source
projects.

2.1 Installation on Unix Systems

The GridSolve distribution tar file is available from the GridSolve web site located at the following
URL:

http://icl.cs.utk.edu/gridsolve/software/index.html

After uncompressing the source code, go to the root of the GridSolve source tree and using the
provided configure script, simply do:

% ./configure
% make
% make check

There are a few GridSolve-specific options that may be specified when running configure:

• --with-blas : this specifies the location of the BLAS library. If the library is in a standard lo-
cation, this does not need to be specified, but--with-blas=/nonstandard/lib/libblas.a
would be used to specify a nonstandard location.

• --with-lapack : this specifies the location of the LAPACK library. If the library is in a stan-
dard location, this does not need to be specified, but you can specify a nonstandard location
with --with-lapack=/nonstandard/lib/liblapack.a .

• --with-matlab : specifies the location of the Matlab installation. You may specifiy --with-matlab=no
to disable the Matlab client.

• --with-dsi-ibp : enables DSI and specifies the location of the IBP library to use for DSI.
See Chapter12 for more information about using the DSI API.

4

• --enable-debug : if enabled, this causes debugging output to be printed to the console.

• --enable-profiling : enables client profiling of the various stages in the procedure call
(e.g. contacting agent, sending data, etc.). See Chapter13 for more information about the
profiling interface.

Useautoreconf if you need to regenerate the Autotools files. This should only be necessary
if you obtain the code from the CVS repository. You will need arelatively new version of the
Autotools tools.

% autoreconf

When building for multiple architectures:

% mkdir ‘config_ac/config.guess‘
% cd ‘config_ac/config.guess‘
% ../configure
% make
% make check

For Solaris, this might be an example for a make from the CVS for the builders. This disables
dependency tracking because Solaris make/cc may have trouble with it. When building from a
release version, you should not need the disable-dependency-tracking flag because the dependency
information is hardwired into the Makefiles.

% mkdir sparc-sun-solaris2.8
% cd sparc-sun-solaris2.8
% ../configure -C --enable-debug --disable-dependency-t racking
% make -k
% make -k check

Note that the ”make check” part of the build procedure is not intended to test anything. It is
used to build the GridSolve services. If you are only going touse the client, it is not necessary.

2.2 Testing the Unix Installation

Testing solely the client software means that a pre-existing GridSolve system will be contacted,
possibly the default agent and servers running at the University of Tennessee. That system can be
contacted via the hostgridsolve.cs.utk.edu which should always be running an agent. The
step-by-step procedure to test your GridSolve client installation is as follows:

% cd GridSolve/src/testing/gridrpc
% setenv GRIDSOLVE_AGENT gridsolve.cs.utk.edu
% ./totaltest

While the tester is running, it prints messages about its execution. This test tests only the
GridRPC interface. Similar tests for the NetSolve compatibility interfaces (C and Fortran77) exist
in the src/testing/netsolve directory. Details of this process are explained in the following
chapters. For more information on the C and Fortran77 interfaces, see Chapter4. Chapter5 de-
scribes how to test the Matlab interface.

5

2.3 Installation on Windows Systems

This section describes the installation and testing of the Windows version of the GridSolve client
software. At present, the software is distributed in the form of a self-extracting exe file. The Win-
dows client only works with Windows 2000™ and Windows XP™. Itwill not run on Windows
98™ or earlier. The contents of the self-extracting exe file are as follows, whereGRIDSOLVEDIR
refers to the directory where you have unzipped the distribution.

• GRIDSOLVEDIR\ – This directory contains the readme file and an installationscript.

• GRIDSOLVEDIR\lib – This directory contains the GridSolve client library.

• GRIDSOLVEDIR\matlab – This directory contains the Matlab binaries.

• GRIDSOLVEDIR\tools – This directory contains various tools for managing GridSolve.

• GRIDSOLVEDIR\testing – This directory contains various sample binary test programs that
you can run to verify your installation.

The installation process is quite simple.

1. Run the exe you downloaded from the GridSolve webpage to extract the files to a directory.

2. Then run the executablegridsolve install.exe to set the registry keys for GridSolve.

To determine the agent host name, the user can issue the following commands from a DOS
prompt:

C:\> cd GRIDSOLVE_DIR\tools
C:\> getagent

To set a new agent host name, the user must issue the followingcommand:

C:\> cd GRIDSOLVE_DIR\tools
C:\> setagent [agent host name]

If the agent host name is not specified on the command line, youwill be prompted for a host
name. You will have the option of specifying a name or accepting the current agent name set in the
registry.

The de-installation process is quite similar.

C:\> cd GRIDSOLVE_DIR
C:\> gridsolve_install -uninstall

[The above program removes the keys from the Windows registr y]
C:\> rmdir /s GRIDSOLVE_DIR

6

2.4 Testing the Windows installation

You can use the various programs in theGRIDSOLVEDIR\testing directory to test your GridSolve
installation. Remember that a valid GridSolve agent and server should already be running, and the
required problems should be installed on the servers. Here is a list of the test programs currently
available:

• c totaltest

• c totaltestasync

• f totaltest

• f totaltestasync

For example, to perform a sample run of ctotaltest, the user must do the following:

1. Usesetagent to point to the correct agent host. (e.g.setagent gridsolve.cs.utk.edu)

2. Runc totaltest.exe from the testing directory.

2.5 Using GridSolve from Windows Matlab

A user new to Gridsolve will find the Matlab interface very simple. The matlab interface is in
GRIDSOLVEDIR\matlab . To access the interface:

1. Start up Matlab

2. Click on File⊲ Set Path ...

3. Add theGRIDSOLVEDIR\matlab directory to the path

The interface consists of 4 GridSolve dlls, which should be in your Matlab path:gridsolve.dll ,
gridsolve nb.dll , gridsolve err.dll , andgridsolve errmsg.dll .

To begin testing from Matlab, there are a couple of commands that display the status of the
system. The following command prints the agent and servers currently available:

gridsolve(’?’)

Specifying the same function name without any arguments will print the list of problems that can
be solved:

gridsolve

7

Chapter 3

GridRPC API

3.1 Introduction

The primary API used by GridSolve is GridRPC, a standardized, portable, and simple programming
interface for remote procedure call (RPC) over the Grid. In this section, we informally describe the
GridRPC model and the functions that comprise the API. Appendix B contains a detailed listing of
the function prototypes. Chapter4 describes the NetSolve compatibility layer, which provides an
API that matches the API of NetSolve 2.0.

3.2 Function Handles and Session IDs

Two fundamental objects in the GridRPC model arefunction handles andsession IDs. The function
handle represents a mapping from a function name to an instance of that function on a particular
server. The GridRPC API does not dictate the mechanics of resource discovery since different un-
derlying GridRPC implementations may use vastly differentprotocols. Once a particular function-
to-server mapping has been established by initializing a function handle, all RPC calls using that
function handle will be executed on the server specified in that binding. A session ID is an identifier
representing a particular non-blocking RPC call. The session ID is used throughout the API to allow
users to obtain the status of a previously submitted non-blocking call, to wait for a call to complete,
to cancel a call, or to check the error code of a call.

3.3 Initializing and Finalizing Functions

The initialize and finalize functions are similar to the MPI initialize and finalize calls. Client
GridRPC calls before initialization or after finalization will fail.

• grpc initialize reads the configuration file and initializes the required modules.

• grpc finalize releases any resources being used by GridRPC.

3.4 Remote Function Handle Management Functions

The function handle management group of functions allows creating and destroying functionhan-
dles.

8

• grpc function handle default creates a new function handle using the default server.
This could be a pre-determined server name or it could be a server that is dynamically chosen
by the resource discovery mechanisms of the underlying GridRPC implementation, such as
the NetSolve agent.

• grpc function handle init creates a new function handle with a server explicitly specified
by the user.

• grpc function handle destruct releases the memory associated with the specified func-
tion handle.

• grpc get handle returns the function handle corresponding to the given session ID (that is,
corresponding to that particular non-blocking request).

3.5 GridRPC Call Functions

A GridRPC may be either blocking (synchronous) or non-blocking (asynchronous) and it accepts
a variable number of arguments (likeprintf) depending on the calling sequence of the particular
routine being called.

• grpc call makes a blocking remote procedure call with a variable number of arguments.

• grpc call async makes a non-blocking remote procedure call with a variable number of
arguments.

3.6 Asynchronous GridRPC Control Functions

The following functions apply only to previously submittednon-blocking requests.

• grpc probe checks whether the asynchronous GridRPC call has completed.

• grpc probe or checks whether any of the previously issued non-blocking calls in a given set
have completed.

• grpc cancel cancels the specified asynchronous GridRPC call.

• grpc cancel all cancelsall previously issued calls.

3.7 Asynchronous GridRPC Wait Functions

The following five functions apply only to previously submitted non-blocking requests. These calls
allow an application to express desired non-deterministiccompletion semantics to the underlying
system, rather than repeatedly polling on a set of sessions IDs. (From an implementation standpoint,
such information could be conveyed to the OS scheduler to reduce cycles wasted on polling.)

• grpc wait blocks until the specified non-blocking requests to complete.

• grpc wait and blocks until all of the specified non-blocking requests in a given set have
completed.

9

• grpc wait or blocks untilany of the specified non-blocking requests in a given set has com-
pleted.

• grpc wait all blocks untilall previously issued non-blocking requests have completed.

• grpc wait any blocks untilany previously issued non-blocking request has completed.

3.8 Error Reporting Functions

Of course it is possible that some GridRPC calls can fail, so we need to provide the ability to check
the error code of previously submitted requests. The following error reporting functions provide
error codes and human-readable error descriptions.

• grpc error string returns the error description string, given a numeric errorcode.

• grpc get error returns the error code associated with a given non-blockingrequest.

• grpc get failed sessionid returns the session ID of the last invoked GridRPC call that
caused a failure.

10

Chapter 4

NetSolve Compatibility Interface

4.1 Introduction

The C and Fortran77 client interfaces for NetSolve compatibility are compiled as part of the normal
build process, so if you have followed the procedures outlined in Chapter2, the following library
should exist:

src/netsolve/libnetsolve.a

This library contains both the C and Fortran77 interfaces.
Before linking to one of these libraries, the user must include the appropriate header file in his

program:

• src/client/netsolve.h in C programs

• src/client/fnetsolve.h in Fortran77 programs

The Fortran77 include file is not mandatory, but increases the source program readability by
allowing calling subroutines to manipulate the NetSolve error codes by variable name rather than
by integer value. See [AAB+02] for detailed information about using the NetSolve API. Thecom-
patibility layer included in GridSolve works the same as theoriginal NetSolve API, but because
GridSolve uses a different Interface Definition Language, the calling sequence should be structured
according to the GridSolve mechanism. See Chapter10 for more detail on determining the calling
sequence.

11

Chapter 5

Matlab Interface

5.1 Introduction

GridSolve can be built with an optional Matlab client interface. This interface allows a Matlab user
to transparently and easily use remote services from withinthe Matlab session. GridSolve handles
all the details involved in sending the arguments to the appropriate server and fetching the results.

5.2 Building and Enabling the Matlab Interface

At this time, if a Matlab installation can be located during the configuration process, the Matlab
GridSolve interface will be built by default. If you wish to build without Matlab, you can pass the
option --with-matlab=no to the configure script.

In order to use GridSolve, certain files need to be on the Matlab search path. In a C style shell,
the following will setup the correct path. You can also use the Matlab commandaddpath to setup
the path.

setenv MATLABPATH ${MATLABPATH}:${GRIDSOLVE_ROOT}/${G RIDSOLVE_ARCH}/src/matlab_client
setenv MATLABPATH ${MATLABPATH}:${GRIDSOLVE_ROOT}/src /matlab_client

5.3 Matlab GridSolve API

The Matlab GridSolve interface closely matches the GridRPCAPI.

• gs_info(’service_name’)
This call will return information about the service.

• [output_args, ...] = gs_call(’service_name, input_args, ...)
This will make a blocking call to a GridSolve server that can perform the service.

• sessionid = gs_call_async(’service_name, input_args, .. .)
This will make a asynchronous non-blocking call to a GridSolve server that can perform the
service. The sessionid is used to probe the call and to wait for results.

• status = gs_call_probe(sessionid)
This is used to probe an asynchronous call to see if it has completed. It returns 1 if the call
has completed.

12

• [output_args, ..] = gs_wait(sessionid)
This is used to wait for the completion of an asynchronous call, and fetch the resulting output.
On error, the output is all blank.

• status = gs_cancel(sessionid)
This is used to wait for the completion of an asynchronous call, and fetch the resulting output.
The status is 0 on success.

• status = gs_get_last_error
Returns an error number for the last error that occurred.

• str = gs_error_string(errnum)
Returns a string message for the error errnum.

5.4 Example Matlab session

The following example shows how the Matlab client can be used. The function that is called
(vpass_int) simply sends an integer vector back and forth, doing nothing useful. It is used for
testing and timing GridSolve.

>> gs_info(’vpass_int’)
Description of call:
<problem name="vpass_int" type="subroutine" descriptio n="Does nothing...just for testing performance

<arglist count="2">
<arg name="ivec" inout="inout" datatype="int" objectype ="vector" rowexp="n" colexp="1" description="none
<arg name="n" inout="in" datatype="int" objectype="scal ar" rowexp="1" colexp="1" description="none"

</arglist>
<infolist count="4">

<info type="LANGUAGE" value="C" />
<info type="LIBS" value="-L$(top_builddir)/problems/p assing -lpass" />
<info type="COMPLEXITY" value="1.0" />
<info type="MAJOR" value="ROW" />

</infolist>
</problem>
Matlab call prototype:
[ivec] = vpass_int(ivec, n)
>> ivec = rand(10,1);
ivec = rand(10,1);
>> [sessionid] = gs_call_async(’vpass_int’, ivec, 10);
>> status = gs_probe(sessionid);
>> status
status =

1
>> [outvec] = gs_wait(sessionid);
>> size(outvec)
ans =

10 1

13

Chapter 6

GridSolve Request Farming

6.1 Introduction

Farming is a way of calling GridSolve to manage large numbersof requests for a single GridSolve
problem. Many GridSolve users are confronted by situationswhen many somewhat similar compu-
tations must be performed in parallel. One way to do this in GridSolve is to write non-blocking calls
to grpc call async() in C for instance. However, this can become cumbersome. In the present
distribution, this call,grpc farm() , is only available from C and Matlab. A Fortran interface will
most likely not be provided because of pointer management.

6.2 Calling Farming in C

Like grpc call() and grpc call async() , the grpc farm() function takes a variable number
of arguments. Its first argument is a string that describes the iteration range. This string is of the
form i=%d,%d (in C string format symbols). The second argument is a problem name appended
with an opening and a closing parenthesis. The arguments following are similar in intent to the
ones supplied togrpc call() , but are iterators as opposed to integers or pointers. Wherethe user
was passing, say an integer, togrpc call() , he now needs to pass an array of integers and tell
grpc farm() which element of this array is to be used for which iteration.This information is
encapsulated in an iterator and we provide three functions to generate iterators:

grpc_int()
grpc_int_array()
grpc_ptr_array()

Let us review these functions one by one.

• grpc int() – This function takes only one argument: a character string that contains an ex-
pression that is evaluated to an integer at each iteration. The format of that string is based on
a Shell syntax. $i represents the current iteration index, and classic arithmetic operators are
allowed. For instance:

grpc_int("$i+1")

returns an iterator that generates an integer equal to one plus the current iteration index at
each iteration.

14

• grpc int array() – This function takes two arguments: i. a pointer to an integer array (int *);
ii. a character string that contains an expression. For instance,

grpc_int_array(ptr,"$i")

returns an iterator that generates at each iteration an integer equal to theith element of the
array ptr wherei is the current iteration index.

• grpc ptr array() – This function takes two arguments: i. a pointer to an array of pointers (void
**); ii. a character string that contains an expression. Forinstance,

grpc_ptr_array(ptr,"$i")

returns an iterator that generates at each iteration a pointer which is theith element of the
array ptr wherei is the current iteration index.

6.3 An example

Let us assume that the user wants to sort an array of integers with GridSolve using the C interface.
The default GridSolve server comes with a default problem called iqsort that does a quicksort on an
integer vector. The call looks like

status = grpc_call(&handle,size,ptr,sorted);

where size is the size of the array to be sorted, ptr is a pointer to the first element of the array,
and sorted is a pointer to the memory space that will hold the sorted array on return. What if the
user wants to sort 200 arrays? One way is to write 200 calls as the one above. Not only would
it be tedious, but also inefficient as the sorts would be done successively, with no parallelism. In
order to obtain parallelism, one must callgrpc call async() and make the corresponding calls
to grpc probe() andgrpc wait() as explained in Chapter4 or usegrpc farm() . Before calling
grpc farm() , the user needs to construct arrays of pointers and integersthat contain the arguments
of each of the GridSolve calls. This is straightforward: where the user would have called GridSolve
as:

status1 = grpc_call_async(&handle, &request1, size1, ptr 1, sorted1);
status2 = grpc_call_async(&handle, &request2, size2, ptr 2, sorted2);
...
status200 = grpc_call_async(&handle, &request200, size2 00, array200, sorted200);

and then to have calls togrpc probe() andgrpc wait() for each request. With farming, one only
needs to construct three arrays as:

int size_array[200];
void *ptr_array[200];
void *sorted_array[200];
size_array[0] = size1;
ptr_array[0] = ptr1;
sorted_array[0] = sorted1;
...

15

Then,grpc farm() can be called as:

status_array = grpc_farm("i=0,199",&handle,
grpc_int_array(size_array,"$i"),
grpc_ptr_array(ptr_array,"$i"),
grpc_ptr_array(sorted_array,"$i"));

In short,grpc farm() is a concise, convenient way of farming out groups of requests. Of course, it
usesgrpc call async() underneath, thereby ensuring fault-tolerance and load-balancing.

6.4 Catching errors

grpc farm() returns an integer array. That array is dynamically allocated and must be freed by
the user after the call. The array is at least of size 1. The first element of the array is either
GRPCNOERRORor some GridRPC error code such asGRPCOTHERERRORCODE. If it is GRPCNOERROR,
then the call was completed successfully and the array is of size 1. If the first element of the array
is notGRPCNOERROR, then at least one of the requests failed. The array is then ofsize one plus the
number of requests and the(1+ i)th element of the array is the error code for theith request. Here
is an example on how to print error messages:

status = grpc_farm("i=0,200",....);
if (status[0] == GRPC_NO_ERROR) {

fprintf(stderr,"Success\n");
} else {

for (i=1;i<201;i++) {
fprintf(stderr,"Request #%d:",i);
fprintf(stderr,"reason: %s\n", grpc_error_string(stat us[i]));

}
}
free(status);

6.5 Farming in Matlab

TBA

16

Chapter 7

Running the GridSolve Agent

After compiling the agent as explained in Chapter2, the executable of the GridSolve agent is:

$GRIDSOLVE_ROOT/src/agent/GS_agent

The proper command line for this program is

GS_agent [-c] [-l logfile] [-w httpd_port]

When invoked with no arguments, a stand-alone agent is started. This agent is now available for
registrations of GridSolve servers wanting to participatein a new GridSolve system. After servers
are registered, client programs can contact this agent and have requests serviced by one or more of
the registered servers. If there is already an agent runningon the machine, you will need to adjust
the environment variables to avoid conflicts with the ports that are already in use. See AppendixA
for details.

The-l option specifies the name of a file to use for logging purposes.

% GS_agent -l /home/user/agent_logfile

This file is where the agent logs all of its interactions (and possibly errors) since it is a daemon
with no controlling terminal and therefore has no way to do this otherwise. This log file also
produces very useful information about requests, among other things, that helps administrators
know how their GridSolve system is being used. If no-l option is specified, the default log file
is $GRIDSOLVEROOT/gs agent.log . This means that successive runs of the agent with no spec-
ification of a log file will overwrite the original log file, so if the information is needed, it must
be copied to another file. To terminate an existing agent (or query an existing GridSolve system),
the user should refer to the GridSolve management tools, particularly GS killagent , as outlined in
Chapter9.

If you do not want to run the agent as a daemon and would like to see all output logged to the
console instead of a file, specify the-c option.

The -w option allows changing the port on which the agent’s http daemon listens. By default,
the daemon attempts to use port 8080. If “disable” is specified as the port, the agent will not attempt
to start the http daemon.

17

Chapter 8

Running the GridSolve Server

After compiling the server as explained in Chapter2, the executable of the GridSolve server is:

$GRIDSOLVE_ROOT/src/server/GS_server

The proper command line for this program is

GS_server [-c] [-l logfile] [-s server config]

This executable uses a configuration file for initializing the GridSolve server. The default con-
figuration file is$GRIDSOLVEROOT/server config . This is the file that should be used for first
experiments and for testing the system. However, it is possible to customize or expand the function-
ality of a server by modifying this file. The-s option may be used to specify an alternate location
for the file, for example:

% GS_server -s /tmp/test/server_config

The-l option specifies the name of a file to use for logging purposes.

% GS_server -l /home/user/server_logfile

This file is where the server logs all of its interactions (andpossibly errors) since it is a daemon
with no controlling terminal and therefore has no way to do this otherwise. This log file also
produces very useful information about requests, among other things, that helps administrators
know how their GridSolve system is being used. If no-l option is specified, the default log file
is $GRIDSOLVEROOT/gs server.log . This means that successive runs of the server with no spec-
ification of a log file will overwrite the original log file, so if the information is needed, it must be
copied to another file. To terminate an existing server (or query an existing GridSolve system), the
user should refer to the GridSolve management tools, particularly GS killserver , as outlined in
Chapter9.

Note: When running multiple servers within the same directory tree, if a unique log file is not
specified, then the most recently started server will take over the log file. Log messages from other
servers will be lost. Use the-l parameter to specify a unique log for each server to avoid this.

If you do not want to run the server as a daemon and would like tosee all output logged to the
console instead of a file, specify the-c option.

18

8.1 The Server Configuration File

The server configuration file is used to customize the server.The default configuration file in
$GRIDSOLVEROOT/server config should be used as a template to create new configuration files.
This configuration file is organized as follows. A line can contain one of three things:

• A comment – if the line starts with a# (pound symbol) then the remainder is ignored and may
be used for comments.

• Nothing – if the line is blank, it is ignored.

• Attribute Assignment – these assignments take the form

ATTRIBUTE=VALUE

whereATTRIBUTE is the name of the attribute being defined andVALUEis a string representing
the value to be assigned. For example

AGENT=gridsolve.cs.utk.edu

Let us review some of the possible attributes and how they canbe used to precisely define a
GridSolve server as it is done in the default configuration file.

• AGENT– the name of the host running the agent

• PORT– the port on which this server should listen

• OUTPUTTTL – the number of seconds to allow unretrieved results to remain stored on disk

In addition, you may define your own attributes. These will bereported to the agent upon
registration of the server and may be used by the client for filtering the server selection.

8.2 Server Restrictions

Sometimes it is useful to restrict the circumstances under which a server will accept jobs. The
GridSolve server supports two methods of restricting usage: by time and by the number of running
jobs.

For example, to only accept jobs from 9am to 5pm (local time),add a line to the serverconfig
file such as:

RESTRICT_TIME=9:00am-5:00pm

The beginning and ending times may formatted as “H:M:S”, “H:M”, or “H”. If “am” or “pm” is not
appended the time is assumed to be in 24-hour format.

The server can also limit the total number of jobs that it willrun at a time. For example, to allow
only three jobs to run at a time, add a line to the serverconfig file such as:

RESTRICT_JOBS=3

19

8.3 Adding Services to a GridSolve Server

Before incorporating a function into GridSolve, the user must write a GridSolve Interface Definition
Language (gsIDL) file that describes the calling sequence. See Chapter10for more detail on writing
these files. Once the gsIDL file has been written, it must be compiled using the GridSolve problem
compiler in the$GRIDSOLVE_ROOT/src/problem directory. For example:

% problem_compile ddot.idl

The problem compiler generates a service directory (in$GRIDSOLVE_ROOT/service) for each prob-
lem specification in the gsIDL file. In this service directorythe problem compiler creates a service
executable that is executed by the GridSolve server. Therefore, the server administrator does not
need to restart the server to add a new service.

20

Chapter 9

GridSolve Management Tools for
Administrators

The GridSolve distribution comes with tools to manage the GridSolve system. After compilation
the following executables are available:

$GRIDSOLVE_ROOT/src/tools/GS_config
$GRIDSOLVE_ROOT/src/tools/GS_get_example
$GRIDSOLVE_ROOT/src/tools/GS_killagent
$GRIDSOLVE_ROOT/src/tools/GS_killserver
$GRIDSOLVE_ROOT/src/tools/GS_probdesc
$GRIDSOLVE_ROOT/src/tools/GS_problems

Let us review these executables one by one.

• GS config – This executable takes one argument on the command line – thename of a host
running a GridSolve agent. It then prints a list of servers participating in the GridSolve
system:

% GS_config cupid.cs.utk.edu
AGENT: cupid [3 servers]
SERVER: ig.cs.utk.edu (160.36.58.91:9000)
SERVER: kiransagi (160.36.253.12:9000)
SERVER: ns4 (192.168.0.5:9000, proxy=160.36.58.63:8888)

For servers that are proxied, the proxy information is printed also.

• GS get example – This is used to request a C source code example for the specified service.
The usage is as follows.

Usage: GS_get_example <problem name> [server name]

The name of the problem is required, but a specific server hostname is optional. If specified,
the example will be requested from that server. The C source code is then printed to stdout.

21

• GS killagent – This executable takes one argument on its command line – thename of a
host running a GridSolve agent. After a (basic) user authentication, the executable kills the
agent.

% GS_killagent gridsolve.cs.utk.edu

For this beta release, the password to kill agents and servers is hardcoded to “GridSolve”,
however in the first official release we will have authentication enabled for these tools.

• GS killserver – This executable takes two arguments on its command line – the name of a
host running a GridSolve agent and the name of a host running aGridSolve server. After a
(basic) user authentication, the executable kills the server, using the agent as an entry-point
into the system.

% GS_killserver gridsolve.cs.utk.edu cupid.cs.utk.edu

• GS problems – This executable takes one argument on the command line – thename of a host
running a GridSolve agent. It then prints a list of problems that can be solved by contacting
that agent.

% GS_problems cupid.cs.utk.edu
AGENT: cupid [26 problems]
dgesv
dposv
ddot
daxpy
dgemv
dgemm
ctotal
ftotal
sleeptest
ns_abort
return_int_scalar
return_float_scalar
return_double_scalar
return_char_scalar
return_int_vector
return_float_vector
return_double_vector
return_char_vector
return_int_matrix
return_float_matrix
return_double_matrix
return_char_matrix
vpass_int
mpass_int_rowmaj
varlen_return
mandel

22

• GS probdesc – This executable takes two arguments on the command line. The first argument
is the name of a host running a GridSolve agent and the second argument is the name of the
problem whose description should be printed. It then printsa detailed description of the
specified problem:

% GS_probdesc cupid.cs.utk.edu ddot

Problem Name: ddot

Problem Description:
Forms the dot product of two vectors.

Double Precision routine.
http://www.netlib.org/blas/

Argument 0:
Argument Name: n
Description: none
In/out mode: in
Data type: int
Object type: scalar
Row size expr: 1
Column size expr: 1

Argument 1:
Argument Name: dx
Description: none
In/out mode: in
Data type: double
Object type: vector
Row size expr: n*incx
Column size expr: 1

Argument 2:
Argument Name: incx
Description: none
In/out mode: in
Data type: int
Object type: scalar
Row size expr: 1
Column size expr: 1

Argument 3:
Argument Name: dy
Description: none
In/out mode: in
Data type: double
Object type: vector

23

Row size expr: n*incy
Column size expr: 1

Argument 4:
Argument Name: incy
Description: none
In/out mode: in
Data type: int
Object type: scalar
Row size expr: 1
Column size expr: 1

Argument 5:
Argument Name: __retval
Description: Return value
In/out mode: out
Data type: double
Object type: scalar
Row size expr: 1
Column size expr: 1

Problem attributes:
LANGUAGE: FORTRAN
LIBS: $(BLAS_LIBS)
COMPLEXITY: 2.0*N
MAJOR: COLUMN

24

Chapter 10

GridSolve Interface Definition Language

The GridSolve Interface Definition Language (gsIDL) is the mechanism through which GridSolve
enables services to be invoked on behalf of the user. GridSolve comes with several example gsIDL
files in the$GRIDSOLVEROOT/problems/idl directory. First we will show a simple example and
then examine the gsIDL file format in more detail.

10.1 gsIDL Example

Suppose we want to integrate the BLAS routineddot (which computes the dot product of two
vectors) into GridSolve. As you can see from the original Fortran header, it takes two vectors, a
length argument, and a stride argument for each of the vectors:

double precision function ddot(n,dx,incx,dy,incy)
double precision dx(*),dy(*)
integer n,incx,incy

The gsIDL file corresponding to this function would be:

1 FUNCTION double ddot(IN int n, IN double dx[n*incx], IN int i ncx,
2 IN double dy[n*incy], IN int incy)
3 "Dot product (from BLAS)"
4 LANGUAGE = "FORTRAN"
5 LIBS = "/usr/local/lib/libf77blas.a /usr/local/lib/lib atlas.a"
6 COMPLEXITY = "2.0*N"
7 MAJOR="COLUMN"

Now we examine this file line-by-line.

• Lines 1-2: This is the header, which defines the arguments that appear in the function to be
called by GridSolve. It resembles the original function declaration, but GridSolve requires
a bit of extra information. For each argument, it needs to know whether it is modified by
the function. In this case, none of the arguments are modified, so we declare them all asIN ,
meaning input-only. The full range of possibilites will be explained in more detail later. For
non-scalar arguments, we must also specify the size of the argument in terms of some scalar
arguments. This can be a mathematical expression, as shown in this example. Sincen is the
number of elements (not the total vector length) andincx is the stride fordx , the total length

25

of the dx vector that must be sent to the server isn*incx . Thus we declare the vectors as
dx[n*incx] anddy[n*incy] .

• Line 3: This line is a string describing the function.

• Line 4: This line specifies the language in which the function is implemented.

• Line 5: This line specifies the libraries that need to be linked. In this case we link the ATLAS
library since it contains the implementation of theddot function that we want GridSolve to
call.

• Line 6: This is an expression that specifies the asymptotic complexity (orbig-O bounds) for
the algorithm. It is expressed in terms of constants and/or arguments from the gsIDL function
delcaration (lines 1-2). The typical mathematical operators are allowed, as explained in more
detail in Section??.

• Line 7: This line specifies whether the algorithm is row-major or column-major. In this case
it does not really matter since it is not a matrix algorithm. GridSolve will automatically
transpose matrices when calling from a row-major client to acolumn-major service (or vice
versa).

10.2 Description of the gsIDL Grammar

The EBNF grammar for the gsIDL file is:

Start ::= IDL PARSE Problemlist
Start ::= EXPREVAL TOK DimEvaluated
Identifier ::= IDENTIFIER
Constant ::= CONSTANT
StringLiteral ::= STRINGLITERAL
Problemlist ::= [Problemlist] Problem
Problem ::= ProbSpec Identifier “(” Arglist “)” Description Infolist
ProbSpec ::= FUNCTION Datatype “[” Dim “]” “ [” Dim “]”
ProbSpec ::= FUNCTION Datatype “[” Dim “]”
ProbSpec ::= FUNCTION Datatype
ProbSpec ::= SUBROUTINE
Infolist ::= [Infolist] Info
Info ::= Infotype “=” StringLiteral
Arglist ::= [[Arglist “ ,”] Arg]
Arg ::= Inout (Datatype Identifier “[” Dim “]” “ [” Dim “]” “ {” SpDim

“ ,” SpDim “,” SpDim “}” Description| Datatype Identifier “[”
Dim “]” “ [” Dim “]” Description| Datatype Identifier “[” Dim
“]” Description| Datatype Identifier Description| FILE TOK
Identifier Description| FILE TOK Identifier “[” Dim “]”
Description)

SpDim ::= Identifier
Inout ::= IN TOK
Inout ::= INOUT TOK

26

Inout ::= OUT TOK
Inout ::= VAROUT
Inout ::= WORKSPACE
Description ::= [StringLiteral]
Datatype ::= INTTOK
Datatype ::= CHARTOK
Datatype ::= FLOATTOK
Datatype ::= SCOMPLEX
Datatype ::= DCOMPLEX
Datatype ::= DOUBLETOK
Infotype ::= LANGUAGE
Infotype ::= MAJOR
Infotype ::= LIBS
Infotype ::= INCLUDES
Infotype ::= COMPLEXITY
Infotype ::= PARALLEL
Infotype ::= CODE
Infotype ::= Identifier
DimEvaluated ::= expression
Dim ::= expression
primary expression ::= Identifier
primary expression ::= Constant
primary expression ::= “(” expression “)”
postfix expression ::= primaryexpression
postfix expression ::= Identifier “(” “)”
postfix expression ::= Identifier “(” argumentexpressionlist “)”
argumentexpressionlist ::= [argumentexpressionlist “ ,”] expression
unary expression ::= postfixexpression
unary expression ::= unaryoperator castexpression
unary operator ::= “+”
unary operator ::= “−”
unary operator ::= “ ”
unary operator ::= “!”
castexpression ::= unaryexpression
castexpression ::= “(” type specifier “)” cast expression
multiplicative expression ::= [multiplicative expression (“∗” | “/” | “%”)] castexpression
additive expression ::= [additive expression (“+” | “−”)] multiplicative expression
shift expression ::= [shift expression (LEFTOP| RIGHT OP)]

additive expression
relationalexpression ::= [relationalexpression (“<” | “>” | LE OP| GE OP)]

shift expression
equality expression ::= [equality expression (EQOP| NE OP)]

relationalexpression
and expression ::= [and expression “&”] equality expression
exclusiveor expression ::= [exclusiveor expression “̂”] and expression
inclusive or expression ::= [inclusive or expression “|”] exclusiveor expression
logical and expression ::= [logical and expression ANDOP] inclusive or expression

27

logical or expression ::= [logical or expression OROP] logical and expression
expression ::= logicalor expression[“?” expression “:” expression]
type specifier ::= CHARTOK
type specifier ::= SHORTTOK
type specifier ::= INTTOK
type specifier ::= LONGTOK
type specifier ::= FLOATTOK
type specifier ::= DOUBLETOK

As you can see from the grammar, each problem should begin with the problem specification
followed by a string description. After that, the problem attributes (LANGUAGE, MAJOR, etc.) may be
specified in any order.

In the grammar,WORDrepresents an identifier which begins with a letter and is followed by
sequence of letters, digits, or underscores. It would be expressed as a regular expression as follows:

[a-zA-Z]([0-9]|[a-zA-Z]|_)*

STR CONSTis an arbitrary string enclosed with double quotes. All the other terminals in the grammar
are keywords with the same name in the gsIDL.

Notice that each argument inArglist is prefaced with anInout specifier. This describes how the
argument is to be passed to the server. the possible categories are:

• IN – input-only, allocated by the client and not modified by the function

• OUT– output-only, allocated by the client and initialized by the function

• INOUT – input-output, allocated and initialized by the client andmodified by the function

• VAROUT– output-only, allocated and initialized by the function

• WORKSPACE– this is used to represent Fortran “workspace” arguments which you want to
leave out of the client calling sequence. These will be allocated by the server and do not get
transmitted over the wire.

Most of theInfotype keywords were described in the gsIDL example earlier. The others repre-
sented in the grammar are reserved for future use.

10.3 Determining the C Client Calling Sequence

In this section we will describe how to write the client code to call any gsIDL. The easiest way to un-
derstand the calling sequence for a given gsIDL is to compileit and look at the example client code
that is generated by the GridSolve gsIDL compiler. It will benamed<PROB_NAME>_grpc_example.c ,
where<PROB_NAME>is the name of the service.

In general, the client call will have one argument for each argument in the gsIDL problem
specification. There are two exceptions.

1. If the argument is classified asWORKSPACE, then it is omitted from the client calling sequence.

28

2. If the problem is declared as aFUNCTION(as opposed to aSUBROUTINE, which has no return
value), there will be an additional argument at the end of thenormal client calling sequence
to hold the return value. It is considered an output-only argument, so it should be passed
by reference. This is done because the GridRPC calls return astatus (or request ID for non-
blocking calls), so they cannot also return the function’s return value.

One of the main characteristics that is relevant to determining how an individual argument
should be passed is whether the argument is scalar or non-scalar. If the argument is a scalar and is
input-only, then it is passed by value. Otherwise it should be passed by reference. If the argument
is non-scalar, then it is always passed by reference. One special case isVAROUTwhich allows the
service to return a variable-length non-scalar. In this case, the argument should be passed as pointer-
to-pointer.

10.4 Determining the Fortran Client Calling Sequence

The NetSolve compatibility layer contains a Fortran 77 API.Fortran differs from C in that all argu-
ments are passed by reference. GridSolve will handle dereferencing the pointers for arguments that
are expected to be passed by value, so you should just pass thearguments as normal from Fortran.

29

Chapter 11

Interfacing with Batch Queues

Some machines, typically large parallel machines or clusters, can only be used by submitting the
job to a batch queue. To allow GridSolve to work on such machines, we need to provide support
for batch queue submission. However, since there is a wide variety of batch queue systems, each
with their own commands and interfaces, we wanted to allow this feature to be customizable by the
administrator of the server to suit the specifics of their site.

We have defined three basic queue operations: submit, probe,and cancel. For each of these
operations, a script must be written to the following specifications.

11.1 Submit Script

GridSolve will pass one argument to the submit script, whichis the name of the batch executable to
be run. You will probably need to pass this executable name tothe batch queue submit command.
Also within the script, you should pass one argument to the batch executable, which is the full path
of the request directory. You should normally use$PWDsince this script would be invoked by the
service process which is already in the request directory, but the batch executable needs to know
where to begin because after submission it may start in a different directory.

Whatever back-end system you submit to, this script should only produce one line on stdout:
a job identifier that can be used by the probe and cancel scripts to check status and kill the job,
respectively.

GridSolve submit scripts should exit with the appropriate status as follows:

• 0 – the job was successfully submitted

• non-zero – there was a failure submitting the job

11.2 Probe Script

GridSolve will pass one argument to the probe script, which is the identifier of the job to probe.
This is the job identifier produced earlier by the submit script.

GridSolve probe scripts should exit with the appropriate status as follows:

• 0 – the job is still running

• 1 – the job has completed

30

• 2 – the job terminated abnormally

11.3 Cancel Script

Arguments: GridSolve will pass one argument to the cancel script, which is the identifier of the job
to kill. This is the job identifier produced earlier by the submit script.

GridSolve cancel scripts should exit with the appropriate status as follows:

• 0 – the job was successfully killed

• 1 – failed to kill the job

11.4 Examples

11.4.1 gsIDL Specification

Before a service can be batch-enabled, the names of the submit, probe, and cancel scripts must be
specified in the gsIDL for the service (and then recompile theservice). An example gsIDL file
follows.

SUBROUTINE batch_test_int(INOUT int x[n], IN int n, IN int d elay)
"Sorts an array of integers."
LANGUAGE = "C"
LIBS = "-L$(top_builddir)/problems/sorting -lsorting"
COMPLEXITY = "n"
MAJOR="ROW"
BATCH_SUBMIT="$(top_builddir)/examples/batch_script s/gs_dummy_submit"
BATCH_PROBE="$(top_builddir)/examples/batch_scripts /gs_dummy_probe"
BATCH_CANCEL="$(top_builddir)/examples/batch_script s/gs_dummy_cancel"

As you can see from this example, the batch scripts are specified in the service attribute section
of the gsIDL file. Aside from those attributes, the file does not need to be modified.

11.4.2 Example Submit Script

In this example, you can see that the batch system requires a special script instead of a binary. So, in
this submit script, we create the batch script with some default values. In this case the actual submit
command prints only the job identifier, so we do not need to parse the output.

TMP_SCRIPT=gs_tmp_script
/bin/rm -f ${TMP_SCRIPT}

cat << EOF > ${TMP_SCRIPT}
#!/bin/bash
#PBS -l nodes=1:ppn=2
#PBS -l walltime=01:00:00

31

foo=\‘cat \$PBS_NODEFILE | awk -F: ’{print \$1}’\‘
ssh \${foo} $1 $PWD
EOF

qsub ${TMP_SCRIPT}

11.4.3 Example Probe Script

In this example, the batch queue has a commandtracejob to get the status of a previously submit-
ted job. We use this information to determine the proper exitstatus.

TRACEJOB=‘which tracejob‘

if qstat $1 >& /dev/null; then
exit 0

else
if ["${TRACEJOB}" = ""]; then

exit 1
else

exit_status=‘tracejob $1 | egrep Exit_status | cut -d ’=’ -f 2‘
if ["${exit_status}" = "0"]; then

exit 1
else

exit 2
fi

fi
fi

11.4.4 Example Cancel Script

Cancelling a job is simple since the batch queue system has command to do it. We just need to make
sure to exit with the appopriate status.

if qdel $1 >& /dev/null; then
exit 0

else
exit 1

fi

32

Chapter 12

Distributed Storage Infrastructure (DSI)
in GridSolve

12.1 DSI Introduction

The Distributed Storage Infrastructure (DSI) is an attempttowards achieving coscheduling of the
computation and data movement over the GridSolve system. The DSI API helps the user in control-
ling the placement of data that will be accessed by a GridSolve service. This is useful in situations
where a given service accesses a single block of data a numberof times. Instead of multiple trans-
missions of the same data from the client to the server, the DSI feature helps to transfer the data
from the client to a storage server just once, and relativelycheap multiple transmissions from the
storage server to the computational server. Thus the present DSI feature helps GridSolve to oper-
ate in a cache-like setting. Presently, only Internet Backplane Protocol (IBP) is used for providing
the storage service. In the future, we hope to integrate other commonly available storage service
systems.

12.2 Using DSI

To use DSI, one should enable the DSI feature both at the GridSolve client and the server. Type

% ./configure --with-dsi-ibp=IBP_DIR

during the initial configure of GridSolve. Here IBPDIR denotes the location of the IBP direc-
tory. This is specifically the directory of the IBP full distribution downloadable from the IBP web
site http://loci.cs.utk.edu/ibp/ . Note: When using IBP in a server pool that has both IBP
enabled servers and those that are not IBP enabled, one should use the assigned server feature to
ensure that the problem submission goes to a server with IBP enabled.

12.3 DSI API

The DSI API is modeled after the UNIX file manipulation commands (open, close etc.) with a
few extra parameters that are specific to the concepts of DSI.This section provides the syntax and
semantics of the different DSI calls available to the GridSolve user.

33

12.3.1 grpcdsi open

This function is used for allocating a chunk of storage in theIBP storage.

grpc_error_t grpc_dsi_open(DSI_FILE **rfile, char* host _name, int flag,
int permissions, int size, dsi_type storage_system);

Parameters:

• rfile – Upon return, contains a pointer to the DSI file.

• host name – Name of the host where the IBP server resides.

• flag – This flag has the same meaning as the flag in open() calls in C. SpecificallyO_CREAT
is used for creating a DSI file.

• permissions – While creating the file withO_CREATflag, the user can specify the permis-
sions for himself and others. The permissions are similar tothe ones used in UNIX. Hence
if the user wants to set read and write permissions for himself and only read permissions for
others, he would call grpcdsi open with 644 as the value for the permissions.

• size – Represents the maximum length of the DSI file. Write or read operations over this
size limit will return an error.

• storage system – At present, only IBP is supported.

On success, returnsGRPCNOERROR. On failure, returnsGRPCOTHERERRORCODEas the major
error code with one of the following minor error codes.

• GRPCDSI UNKNOWNFILE – If the file does not exist and if the file is opened withoutO_CREAT.

• GRPCDSI ALLOCATEERROR– Error while allocating IBP storage.

• GRPCDSI DISABLED – If DSI is not enabled in the GridSolve configuration.

12.3.2 grpcdsi close

This function is used for closing a DSI file.

grpc_error_t grpc_dsi_close(DSI_FILE* dsi_file);

Parameters:

• dsi file – Pointer to the DSI file.

On success returnsGRPCNOERROR. On failure, returnsGRPCOTHERERRORCODEas the major
error code with one of the following minor error codes.

• GRPCDSI MANAGEERROR– Error in IBP internals while closing.

• GRPCDSI DISABLED – If DSI is not enabled in the GridSolve configuration.

34

12.3.3 grpcdsi write vector

This function is used for writing a vector of a particular datatype to a DSI file.

grpc_error_t grpc_dsi_write_vector(DSI_OBJECT **robje ct, DSI_FILE* dsi_file,
void* data, int count, int data_type);

Parameters:

• robject – Upon return contains a pointer to the DSI object created forthe vector.

• dsi file – The name of the DSI file where the vector will be written.

• data – Vector to write to the DSI storage.

• count – Number of elements in the vector.

• data type – One of GridSolve data types.

On success returnsGRPCNOERROR. On failure, returnsGRPCOTHERERRORCODEas the major
error code with one of the following minor error codes.

• GRPCDSI STOREERROR– Error while storing the vector in IBP.

• GRPCDSI EACCES– Not enough permissions for writing to the DSI file.

• GRPCDSI DISABLED – If DSI is not enabled in the GridSolve configuration.

12.3.4 grpcdsi write matrix

Same functionality and return values as grpcdsi write vector() except this function is used to write
matrix of rows rows andcols columns.

grpc_error_t grpc_dsi_write_matrix(DSI_OBJECT **robje ct, DSI_FILE* dsi_file, void* data,
int rows, int cols, int data_type);

12.3.5 grpcdsi read vector

This function is used to read a vector ofcount items.

grpc_error_t grpc_dsi_read_vector(DSI_OBJECT* dsi_obj , void* data, int count,
int data_type, int *bytes_read);

Parameters:

• dsi obj – Pointer to the DSI object that contains the data to read.

• data – Actual vector to read.

• count – Number of elements of the vector to read.

• data type – One of NetSolve data types.

35

• bytes read – Upon return, contains the number of bytes read.

On success returnsGRPCNOERROR. On failure, returnsGRPCOTHERERRORCODEas the major
error code with one of the following minor error codes.

• GRPCDSI LOADERROR– Error while loading the vector from IBP.

• GRPCDSI EACCES– Not enough permissions for reading from the DSI file.

• GRPCDSI DISABLED – If DSI is not enabled in the GridSolve configuration.

12.3.6 grpcdsi read matrix

Same functionality and return values as grpcdsi readvector() except grpcdsi readmatrix() is used
to read matrix ofrows rows andcols columns.

grpc_error_t grpc_dsi_read_matrix(DSI_OBJECT* dsi_obj , void* data, int rows, int cols,
int data_type, int *bytes_read);

12.4 DSI Example

This section shows two example programs. Both programs callint vector add5, which adds 5 to
every element of the input vector and stores the result into the output vector. The first example
shows a standard call and the second example shows the DSI enabled version.

12.4.1 Standard Example

#include <stdio.h>
#include <stdlib.h>

#include "grpc.h"

int
main(int argc, char *argv[])
{

int int_vec_in[] = {93, 120, 84, 57, 147, 138, 66, 12, 88, 2};
int *int_vec_out, i, n;
grpc_function_handle_t handle;
grpc_error_t status;

n = sizeof(int_vec_in) / sizeof(*int_vec_in);

int_vec_out = (int *)malloc(n * sizeof(int));

if(grpc_initialize(NULL) != GRPC_NO_ERROR) {
grpc_perror("grpc_initialize");
exit(EXIT_FAILURE);

}

36

if(grpc_function_handle_default(&handle, "int_vector _add5") != GRPC_NO_ERROR) {
fprintf(stderr,"Error creating function handle\n");
exit(EXIT_FAILURE);

}

status = grpc_call(&handle, n, int_vec_in, int_vec_out);

if(status != GRPC_NO_ERROR) {
printf("GRPC error status = %d\n", status);
grpc_perror("grpc_call");
exit(status);

}

for(i=0; i < n; i++) {
if(int_vec_in[i] != int_vec_out[i] - 5) {

fprintf(stderr, "Bad results in integer list\n");
exit(EXIT_FAILURE);

}
}

grpc_finalize();

printf("Test successful\n");
exit(EXIT_SUCCESS);

}

12.4.2 DSI Example

#include <stdio.h>
#include <stdlib.h>

#include "grpc.h"

int
main(int argc, char *argv[])
{

int int_vec_in[] = {93, 120, 84, 57, 147, 138, 66, 12, 88, 2};
int *int_vec_out, i, n;
grpc_function_handle_t handle;
grpc_error_t status;
DSI_OBJECT *int_vec;
DSI_FILE *dsi_file;

n = sizeof(int_vec_in) / sizeof(*int_vec_in);

int_vec_out = (int *)malloc(n * sizeof(int));

37

if(grpc_initialize(NULL) != GRPC_NO_ERROR) {
grpc_perror("grpc_initialize");
exit(EXIT_FAILURE);

}

if(grpc_dsi_open(&dsi_file, "localhost", O_CREAT|O_RD WR, 644, 30000, GS_DSI_IBP)
!= GRPC_NO_ERROR)

{
fprintf(stderr, "Error opening DSI file.\n");
exit(EXIT_FAILURE);

}

if(grpc_dsi_write_vector(&int_vec, dsi_file, int_vec_ in, n, GS_INT)
!= GRPC_NO_ERROR)

{
fprintf(stderr, "Error writing in_vec to DSI file.\n");
exit(EXIT_FAILURE);

}

if(grpc_function_handle_default(&handle, "int_vector _add5") != GRPC_NO_ERROR) {
fprintf(stderr,"Error creating function handle\n");
exit(EXIT_FAILURE);

}

status = grpc_call(&handle, n, int_vec, int_vec_out);

if(status != GRPC_NO_ERROR) {
printf("GRPC error status = %d\n", status);
grpc_perror("grpc_call");
exit(status);

}

for(i=0; i < n; i++) {
if(int_vec_in[i] != int_vec_out[i] - 5) {

fprintf(stderr, "Bad results in integer list\n");
exit(EXIT_FAILURE);

}
}

grpc_dsi_close(dsi_file);
grpc_finalize();

printf("Test successful\n");
exit(EXIT_SUCCESS);

}

38

Chapter 13

GridSolve Profiling Interface

13.1 Introduction

The profiling interface is a very simple mechanism for providing specific timing information about
the various aspects of a complete job submission. We developed this to be used internally to compare
GridSolve with NetSolve, but it may be of some interest to endusers as well. Since the NetSolve
and GridSolve versions use the same fields, some of them may not be relevant to both systems, so
such fields will always show an elapsed time of 0 in GridSolve.

13.2 Using the Profiling Interface

To use the profiling interface, first declare a variable of typegrpc profile t . This structure should
be passed togrpc profile() before using any of the GridRPC call functions. When making
several non-blocking calls, make sure not to pass the same structure togrpc profile() or the
timing information from different calls will be overwritten.

grpc_error_t grpc_profile(grpc_profile_t *prof)

If successful, this function returnsGRPCNOERROR. On failure, it will return

• GRPCNOTINITIALIZED – if GridRPC isn’t initialized yet.

• GRPCOTHERERRORCODE(with minor errno: GRPCPROFILING NOTENABLED) if profiling
was not enabled during configuration (see Section2.1).

After the service has completed and the results have been retrieved, the profiling information
can be accessed. The available fields, which are all double precision floating point values, follow
below.

• proxy start – unused in GridSolve

• object init – unused in GridSolve

• agent comm– the time to contact the agent and retrieve the server list

• send input – the time to send all the input data

• job complete – unused in GridSolve

• recv output – the time to receive the output data

39

13.3 Example

...
grpc_profile_t gsprof;
...

prof_enabled = grpc_profile(&gsprof) == GRPC_NO_ERROR;

status = grpc_call(&handle, x, i);

if(prof_enabled)
printf("%d: %g %g %g %g %g %g\n",(int)(i*sizeof(x[0])),

gsprof.proxy_start, gsprof.object_init, gsprof.agent_ comm,
gsprof.send_input, gsprof.job_complete, gsprof.recv_o utput);

40

Chapter 14

Using the NAT Proxy

As the rapid growth of the Internet began depleting the supply of IP addresses, it became evident that
some immediate action would be required to avoid complete IPaddress depletion. The IP Network
Address Translator [EF94] is a short-term solution to this problem. Network Address Translation
allows reuse of the same IP addresses on different subnets, thus reducing the overall need for unique
IP addresses.

As beneficial as NATs may be in alleviating the demand for IP addresses, they pose many
significant problems to developers of distributed applications such as GridSolve [Moo02]. Some of
the problems as they pertain to GridSolve include the following:

• IP addresses are not unique – In the presence of a NAT, a givenIP address may not be globally
unique. Typically the addresses used behind the NAT are fromone of several blocks of IP ad-
dresses reserved for use in private networks, though this isnot strictly required. Consequently
any system that assumes that an IP address can serve as the unique identifier for a component
will encounter problems when used in conjunction with a NAT.

• IP address-to-host bindings may not be stable – This has similar consequences to the first
issue in that GridSolve can no longer assume that a given IP address corresponds uniquely
to a certain component. This is because, among other reasons, the NAT may change the
mappings.

• Hosts behind the NAT may not be contactable from outside – This currently prevents all Grid-
Solve components from existing behind a NAT because they must all be capable of accepting
incoming connections.

• NATs may increase network failures – This implies that GridSolve needs more sophisticated
fault tolerance mechanisms to cope with the increased frequency of failures in a NAT envi-
ronment.

To address these issues we have developed a NAT-tolerant communications framework for Grid-
Solve. To avoid problems related to potential duplication of IP addresses, the GridSolve components
will be identified by a globally unique identifier, in this case a 64-bit random number. In a sense,
the component identifier is a network address that is layeredon top of the real network address such
that a component identifier is sufficient to uniquely identify and locate any GridSolve component,
even if the real network addresses are not unique. This is somewhat similar to a machine having

41

an IP address layered on top of its MAC address in that the protocol to obtain the MAC address
corresponding to a given IP address is abstracted in a lower layer.

An important aspect to making this new communications modelwork is theproxy, which is a
component that will allow servers to exist behind a NAT. Since a server cannot accept unsolicited
connections from outside the private network, it must first register with a proxy. The proxy acts on
behalf of the component behind the NAT by accepting incomingconnections destined for it. The
component behind the NAT keeps the connection with the proxyopen as long as possible since
it can only be contacted by other components while it has a control connection established with
the proxy. To maintain good performance, the proxy only examines the header of the connection
establishment message and uses a simple table-based lookupto determine where to forward the
connection. Furthermore, to prevent the proxy from being abused, authentication can be enforced.

Since NATs may introduce more frequent network failures, wehave implemented a protocol to
allow GridSolve components to reconnect to the system and retrieve the results later. This allows
the servers to store the results of a computation to be retrieved at some time later when the network
problem has been resolved. Additionally, this would allow aclient to submit a problem, break the
connection, and reconnect later at a more convenient time toretrieve the results, even perhaps from
a different machine than the one used to submit the problem.

14.1 Starting the NAT Proxy and Proxied Server

The NAT Proxy may be started anywhere on the accessible side of the NAT. Byaccessible, we mean
that a client should be able to establish a connection to the proxy. The client may still have to go
through a NAT on its side, but that is fine as long as it is going through the outbound direction. The
NAT proxy is located in the$GRIDSOLVE_ROOT/src/proxy directory. To start it, simply execute
the following command:

% proxy_server

Once the proxy has been started, you may start the server thatexists behind the NAT. Since the server
needs to request that the proxy handle incoming connections, you need to specify the location of the
proxy before starting the server:

% setenv GRIDSOLVE_PROXY foo.cs.utk.edu:8888

The other components do not need any modification to communicate via the proxy.

42

Bibliography

[AAB +02] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K. Seymour, K. Sagi,
Z. Shi, and S. Vadhiyar. Users’ Guide to NetSolve V1.4.1. Innovative Computing Dept.
Technical Report ICL-UT-02-05, University of Tennessee, Knoxville, TN, June 2002.

[EF94] K. Egevang and P. Francis. The IP Network Address Translator (NAT). RFC 1631,
May 1994.

[Moo02] K. Moore. Recommendations for the Design and Implementation of NAT-Tolerant
Applications. Internet-draft, February 2002. Work in Progress.

[TMW92] Inc. The Math Works.MATLAB Reference Guide. 1992.

[Wol96] S. Wolfram. The Mathematica Book, Third Edition. Wolfram Median, Inc. and Cam-
bridge University Press, 1996.

43

Appendix A

Environment Variables

TableA.1 has a summary of the environment variables used by GridSolve, the components to which
they are relevant, and the default value used if not set. Moredetailed descriptions appear after the
table.

Environment Variable Relevant To Default
GRIDSOLVE_AGENT_PORT Client, Server, Agent 9876
GRIDSOLVE_AGENT Client, Server none
GRIDSOLVE_PROXY Client, Server none
GRIDSOLVE_ROOT Server path detected during configure
GRIDSOLVE_ARCH Server arch string detected during configure
GRIDSOLVE_HTTPD_PORT Agent 8080
GRIDSOLVE_SENSOR_PORT Agent 9988
GRIDSOLVE_SERVER_PORT Agent 9000
GRIDSOLVE_KEYTAB Proxy none
GRIDSOLVE_USERS Proxy none
PROXY_LISTEN_PORT Proxy 8888

Table A.1: Summary of GridSolve Environment Variables

• GRIDSOLVEAGENTPORT– tells the agent the port on which it should listen and tells the client
or server the port on which it should try to contact the agent.

• GRIDSOLVEAGENT– the host name of the GridSolve agent.

• GRIDSOLVEPROXY– the host name and port of the proxy server. For example, “gridsolve.cs.utk.edu:8888”.

• GRIDSOLVEROOT– the full path to the root of the GridSolve installation. This normally does
not need to be set since it can be determined during configuration. If you want to run out of a
different directory than the code was built, you must set this environment variable.

• GRIDSOLVEARCH– the specification string for this architecture. This normally does not need
to be set since it can be determined during configuration.

• GRIDSOLVEHTTPDPORT– the port on which the HTTP daemon should listen.

44

• GRIDSOLVESENSORPORT– the port on which the monitoring sensor should listen.

• GRIDSOLVESERVERPORT– the port on which the server should listen.

• GRIDSOLVEKEYTAB– name of the file containing the GridSolve service principal. This is
used for Kerberos authentication to the proxy.

• GRIDSOLVEUSERS– name of the file containing the authorized user list. This isused for
Kerberos authentication to the proxy.

• PROXYLISTEN PORT– the port on which the proxy should listen.

45

Appendix B

GridRPC API Specification

B.0.1 Initializing and Finalizing Functions

grpc_error_t grpc_initialize(char * config_file_name);
grpc_error_t grpc_finalize();

B.0.2 Remote Function Handle Management Functions

grpc_error_t grpc_function_handle_default(grpc_funct ion_handle_t * handle,
char * func_name);

grpc_error_t grpc_function_handle_init(grpc_function _handle_t * handle,
char * host_name, char * func_name);

grpc_error_t grpc_function_handle_destruct(grpc_func tion_handle_t * handle);
grpc_error_t grpc_get_handle(grpc_function_handle_t * *handle, int sessionId);

B.0.3 GridRPC Call Functions

grpc_error_t grpc_call(grpc_function_handle_t *handle , ...);
grpc_error_t grpc_call_async(grpc_function_handle_t * handle,

grpc_sessionid_t *, ...);

B.0.4 Asynchronous GridRPC Control Functions

grpc_error_t grpc_probe(int sessionID);
grpc_error_t grpc_probe_or(grpc_sessionid_t *idArray, size_t length,

grpc_sessionid_t *idPtr);
grpc_error_t grpc_cancel(int sessionID);
grpc_error_t grpc_cancel_all(void);

B.0.5 Asynchronous GridRPC Wait Functions

grpc_error_t grpc_wait(grpc_sessionid_t sessionID);
grpc_error_t grpc_wait_and(grpc_sessionid_t *idArray, size_t length);
grpc_error_t grpc_wait_or(grpc_sessionid_t *idArray, s ize_t length,

grpc_sessionid_t *idPtr);
grpc_error_t grpc_wait_all(void);

46

grpc_error_t grpc_wait_any(grpc_sessionid_t *idPtr);

B.0.6 Error Reporting Functions

char * grpc_error_string(grpc_error_t error_code);
grpc_error_t grpc_get_error(grpc_sessionid_t sessionI D);
grpc_error_t grpc_get_failed_sessionid(grpc_sessioni d_t *sessionID);

47

Appendix C

NetSolve Compatibility

GridSolve is designed as a replacement for NetSolve, but at the time of this release, there are several
NetSolve features that have not been implemented in GridSolve yet. At the same time, GridSolve
offers several enhancements not found in NetSolve. In this appendix we outline these incompatibil-
ities and enhancements.

C.1 Incompatibilites

• API – GridSolve does not include the sequencing API.

• Backend – Support for different Grid services such as Globus, Condor, and LFC has not been
implemented as part of GridSolve, but nothing prevents you from writing a wrapper that calls
whatever you want.

• Clients – Mathematica, Octave, and Excel interfaces are not supported in GridSolve.

C.2 GridSolve Enhancements

• NAT Tolerance – GridSovle includes a NAT proxy that can allow servers to runbehind a NAT.
The original NetSolve client protocol has been modified so that clients can easily run behind
NATs (without requiring a proxy).

• Performance – Instead of XDR, GridSolve uses aReceiver Makes Right protocol for data
transfer. This requires data conversion only on the receiving end. Also we have incorporated
a more efficient matrix transpose routine for C to Fortran calling (or vice versa). GridSolve
also provides a faster return from non-blocking calls by forking a separate process to handle
the transmission of the input data.

• Disconnect – For very long running jobs, GridSolve provides the option to disconnect from
the server and pick the results up later, even from a different machine.

• IDL – The language for specifying the calling sequence of a routine to be integrated into
GridSolve has been streamlined. We provide theworkspace argument type, which specifies
that the server should allocate memory for the routine, but it does not need to be transferred
over the wire. We provide thevarout argument type, which allows variable-length output

48

arguments to be returned by the service routine. We allow arbitrary mathematical expressions
to be used to specify the sizes of non-scalar arguments and tospecify the complexity of the
algorithm.

• Server – Services are compiled to statically-linked executables,so there are no issues with
library paths or various flags for different linkers. The services are not linked in with the
server binary itself, so to add a new service just requires building the new service and placing
it in the proper subdirectory. The server does not need to be restarted to enable the new
problem.

• Client Criteria – To allow filtering the list of servers returned by the agent,the client can
specify the criteria that it wants satisfied. The criteria can be specified as a boolean expression
(e.g.MEMORY > 1024).

49

	Overview of GridSolve
	An Introduction to Distributed Computing
	What is GridSolve?
	Background
	Overview and Architecture
	Who is the GridSolve User?

	Downloading, Installing, and Testing
	Installation on Unix Systems
	Testing the Unix Installation
	Installation on Windows Systems
	Testing the Windows installation
	Using GridSolve from Windows Matlab

	GridRPC API
	Introduction
	Function Handles and Session IDs
	Initializing and Finalizing Functions
	Remote Function Handle Management Functions
	GridRPC Call Functions
	Asynchronous GridRPC Control Functions
	Asynchronous GridRPC Wait Functions
	Error Reporting Functions

	NetSolve Compatibility Interface
	Introduction

	Matlab Interface
	Introduction
	Building and Enabling the Matlab Interface
	Matlab GridSolve API
	Example Matlab session

	GridSolve Request Farming
	Introduction
	Calling Farming in C
	An example
	Catching errors
	Farming in Matlab

	Running the GridSolve Agent
	Running the GridSolve Server
	The Server Configuration File
	Server Restrictions
	Adding Services to a GridSolve Server

	GridSolve Management Tools for Administrators
	GridSolve Interface Definition Language
	gsIDL Example
	Description of the gsIDL Grammar
	Determining the C Client Calling Sequence
	Determining the Fortran Client Calling Sequence

	Interfacing with Batch Queues
	Submit Script
	Probe Script
	Cancel Script
	Examples
	gsIDL Specification
	Example Submit Script
	Example Probe Script
	Example Cancel Script

	Distributed Storage Infrastructure (DSI) in GridSolve
	DSI Introduction
	Using DSI
	DSI API
	grpc_dsi_open
	grpc_dsi_close
	grpc_dsi_write_vector
	grpc_dsi_write_matrix
	grpc_dsi_read_vector
	grpc_dsi_read_matrix

	DSI Example
	Standard Example
	DSI Example

	GridSolve Profiling Interface
	Introduction
	Using the Profiling Interface
	Example

	Using the NAT Proxy
	Starting the NAT Proxy and Proxied Server

	Environment Variables
	GridRPC API Specification
	Initializing and Finalizing Functions
	Remote Function Handle Management Functions
	GridRPC Call Functions
	Asynchronous GridRPC Control Functions
	Asynchronous GridRPC Wait Functions
	Error Reporting Functions

	NetSolve Compatibility
	Incompatibilites
	GridSolve Enhancements

