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LIFC
Workflow applications

@ Combine several applications
or application modules

@ Precedence constraints
(Files)

@ Application domaine :
Astronomy, Bioinformatics,
Chemistry, Climate Modeling,
Computer Science, Image
Processing, etc.

@ Batch processing
@ Collection of workflows
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LIFC
SOA Grids

@ Provides applications access
@ Execution on clusters

@ Simple acess for scientists

@ Tools : DIET or NINF-G
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O Context

LIFC
Framework model

Applicative framework

- Collection B = {7/,1 < j < N} of N workflows to schedule
- Workflow 77 is represented by a DAG 7/ = (77, D/)

- T ={T,..., T,’;I.} : the tasks

- D! : the precedence constraints

- FJ;is the file sent between T/ and T/ when (T}, T/) € D/
- T:Uj’LT/':{T,{J <jj<njand1<j<N}:setto
schedule
- Typed tasks : t(i, /) as the type of task T.
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O Context

LIFC
Framework model - 2

Target platform

Platform PF : n machines modeled by an undirected graph
PF = (P,L)

- The vertices in P = {py, ..., pn} represent the machines

- The edges of £ are the communication links

- Each link (p;, pj) has a bandwidth bw(p;, p;)

- 7 : set of task types available

- Each machine p; is able to perform a subset of .
-t € 7 is available on the machine p;, w(t, p;) is the time to
perform a task of type t on p;.

- a(i,j) is the machine on which T/ is assigned.
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O Context

LIFC
Framework model - 3

Communication model

- one-port model
- one data transmitted / communication link
- one reception and one transmission / node

* R(px: i) = {(pj, py) € L} is a route from py to p;.

Problem definition
- Static scheduling
- Makespan optimization for the collection of worflows
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O Context

LIFC
Related works

Workflow Scheduling
- Makespan optimization : NP-Hard Problem
- List based heuristics : HEFT, Critical Path, etc.
- Difficult in heterogeneous contexts

Advanced algorithms

- GA for scheduling
- GA give good results on complex systems
- But still a heuristic, distance to optimal ?
- Steady State :
- flow optimization
- identical intrees
- optimal results
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LIFC
Steady-state Scheduling
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0 GA Scheduling

LIFC
GA without communication costs

Classical GA for workflow :
@ gene = task
@ chromosome one row per processor
@ phenotype = schedule
o fitness = 1/makespan
@ population, generation, crossover, mutation ...

PO 0 T3 I T4 ‘ PO TO T4

Pl T Pl T3 T1

P2 T2 P2 T2

Do not take communication into account
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O GA Scheduling

LIFC
With Communication Costs

Communications in the chromosome
- Communication task
- One row per communication link

Dependencies to the source and target node ->
inconsistent communications

Poor efficiency

Evaluation function
- Communications depends upon tasks placement
Fitness evaluation with comunication costs
Used solution
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0 GA Scheduling

LIFC
Algorithm : fitness of a chromosome

Data : Trosched : Femaining tasks, C(T/) : completion time of 7/, o(T/) : start
time of T,f on Paij), 9(pu) : next time p, is idle, w(t, p;) : the time to
perform a task of type ¢ on pj, CT(F,’(',,-) : the communication time to
send F,’(‘y, along route R(Pak.j), Pai,j))

Ttosched <— T

while 7~ToSched 7£  do

choose a free task T,-" € Trosched (EFT heuristic)

Toed < ATI(TL, T €D} and  o(T)) +- 0

foreach task T/ € Tpeq do

| o(T)) = max(o(T)), C(T}) + CT(F)

o(T}) < max(d(Pa,p), o(T}))

C(T)) < o(T]) + w(t(i, ), Pai.j) .

8(Paijy)) < C(T!)  and  Trosched + Troschea \ { T/}

c(T))

return fitness(ch) = 1/Cuax = 1/max,;_,(
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O Simulation

LIFC
Experimental settings

Simulations
- SimGrid-MSG
- GA = 200 individuals

Platforms

- Random platform generation : uniform distribution
- Platform size : 4 to 10 nodes

- Homogeneous

- Heterogeneous

- CCR : communication to computation ratio
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O Simulation

LIFC
Experimental settings - 2

Applications
- Batch sizes from 1 to 10.000
- Applications : 4 to 12 tasks
- 1900 simulations of platform/application

- Heterogeneity :
- Execution from 1 to 10
- Communications from 1 to 4
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ﬂ General Dags

LIFC
Communication Model

@ No cost

@ Static

@ 1-route Bellman-Ford
@ 3-route Bellman-Ford
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LIFC
Communication Model - Results
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ﬂ General Dags

LIFC
GA Improvement (3-Bellman-Ford)
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LIFC Identical Intrees
Relative Measure to Optimal

Distance to optimal ?
- Algorithm improves the quality of the results

- Case of collection of intrees : Steady state algorithm gives
optimal flow

- Lower bound

Relative measure to Optimal (RMO)
- Optimal throughput p
+ Lower bound Lo = &, N number of intrees

: - L .
RMO = mngn,’ makespan;, result of the algorithm
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LlFC Identical Intrees
Fully homogeneous platforms, CCR
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LlFC Identical Intrees
Fully heterogeneous platforms, CCR ~ 0.01
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LlFC Identical Intrees
Fully heterogeneous platforms, CCR =~ 1
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LlFC Identical Intrees
Conclusion and future works

Algorithm’s performance :

@ GA Scheduling for batches of workflows on SOA Grids with
communication costs

@ Collection of different workflows
@ |dentical intrees, comparison to optimal
@ Complex implementation
Future Works
@ Other communication models
@ Other Genetic representation, network driven
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