
PEER GROUP AND FUZZY METRIC TO
REMOVE NOISE IN IMAGES USING
HETEROGENEOUS COMPUTING.

Ma. Guadalupe Sánchez -ITCG ,

Vicente Vidal -UPV ,

Jordi Bataller – UPV.

CONTENT

¢  Introduction
¢ A parallel Denoising Algorithm.
¢ Multi-GPU and multi-core CPU Implementation.
¢ Experimental Study.
¢ Concluding remarks.

INTRODUCTION
Image Denoising Image processing

Affect the performance and
accuracy of some processes

Real-time processing Optimal implementation

• video communication
• biomedical science
• image post-proccesing
• surveillance

Noise removal is a very
important task in
applications related to:

Impulsive noise

during the process of
•  image formation,
• storage or
• transmission

Malfunction

The widespread model of
Impulsive noise

•  is the ”Salt and Pepper” model, or fixed-value
noise.

•  It considers a pixel is wrong, when its value is an
extreme value within the signal range.

•  We assume this model in our work.

Many of the filters to remove impulsive noise in
digital images have been designed, some of them
are based on the concept of ”peer group”.

W:
xi

xj

Is the set of its neighbors
that are similar to it,
according to an chosen
metric. (fuzzy measure,
euclidea measure)

These investigations have shown good results in
Quality

but they don’t seem to be appropriate for real-
time processing.

GPU

¢ Are currently a very popular
platform for develop parallel
applications, considering price
and speed.

¢ Are another widely used tools
for parallel applications.

When we use GPU, the assignation
of the pixels on shared memory or
texture memory, is with the
purpose o f take the most
advantage of the hardware.

Our parallel version of filter is
based on
 •peer group and
 •fuzzy metric

Good quality results while
trying to improve its
performance,
making them usable for
real-time processing.

GPU
.
.
.
GPU

core
.
.
.
core

CPU
The
implementation
uses:

Shared memory

Texture memory

CONTENT

¢  Introduction
¢ A parallel Denoising Algorithm.
¢ Multi-GPU and multi-core CPU

Implementations.
¢ Experimental Study
¢ Concluding remarks

A PARALLEL DENOISING ALGORITHM

¢ Our parallel algorithm uses the peer group and
fuzzy metric.

¢ The fuzzy metric between pixels xi and xj in the
color image is given by:

{ }.),(:),(dxxMWxdxP jiji ≥∈=

o  The peer group of a pixel xi is comprised by the
pixels of a window centered in xi whose distance
from xi exceeds d:

¢ The denoising algorithm is as follows:

Detection

Filtering

pixels are labeled either as:
•  corrupted or
•  uncorrupted.

corrupted pixels
are corrected.

It has two
main steps:

pixel xi is declared as corrupted :

if #P(xi, d) < (m + 1),

where m is the voting threashold.

If xi was previously marked as
corrupted, it is replaced using the
AMF.
The old value is replaced by the
new value.

CONTENT

¢  Introduction
¢ A parallel Denoising Algorithm.
¢ Multi-GPU and multi-core CPU

Implementations.
¢ Experimental Study
¢ Concluding remarks

MULTI-GPU AND MULTI-CORE CPU
IMPLEMENTATIONS.

¢ We have developed three implementations for
two parallel architectures.

OpenMP for multi-core CPU

CUDA for multi-GPU

CPU and GPU in combination

¢  When only the CPU is used, some pixels are assigned
to one core, and the rest to a second core, leaving the
remaining cores (and the GPUs) idle.

Image

Multicore

MultiGPU

¢  When only the GPU is used, the image is divided into
two parts, each one will be processed by a different
GPU.

Image

Multicore

MultiGPU

¢  Using both, Cores in CPU and GPU, we made a
partition of the image in eight horizontal blocks, to be
processed by a combination of GPUs and cores in the
CPU.

Image

Multicore

MultiGPU

D C

B A

¢  Therefore, before the actual processing starts in a GPU, the
CPU control program must select

¢  which GPU devices will be used,
¢  copy data to them,
¢  launch the kernels and
¢  recover the results.

Main memory (RAM) GPU memory

Tasks to be executed by a GPU
are coded into functions called:
kernels

Step 1. Detection

Step 2. Filtering
Synchronization

kernel

kernel

won’t start until
the first ends.

For it, is necessary to consider:
•  where to put the data and
• how to access them,
once they are on the GPU.

Memories with
different features

(size, speed,
access).

GP
U

o  Shared memory
Global memory

GPU
shared memory

block

o  Texture memory Global memory
GPU

Thread.
(but
read-only mode)

is available only to the set of threads being
executed by the same multi-processor in a GPU.

CONTENT

¢  Introduction
¢ A parallel Denoising Algorithm.
¢ Multi-GPU and multi-core CPU

Implementations.
¢ Experimental Study
¢ Concluding remarks

EXPERIMENTAL STUDY

¢ The first test was to compare the use of shared
memory versus texture memory, using 1, 2 and 4
GPUs.

In the following tests, the texture memory is
always used.

Image size Texture
memory

Shared
memory

GPU

6144 x 4096 20.66 17.34 1

6144 x 4096 30.57 29.49 2

6144 x 4096 47.12 41.37 4

CPU GPU

Intel Quad-Core Xeon 2 x
2.2 GHz.

GeFroce GT 120, 512 MB.
4 Multiprocesors.

¢ Performance results using CPU with 16 cores
and different image sizes.

For sizes larger than 384x256, the best results are
obtained when all the 16 cores are used.
Otherwise, it is better to use 8 cores only.

¢ Using several GPUs….

Results using only the GPU, this is,

without transfers RAM-GPU memory.

It is clear that better outcomes occur when all the GPUs
are used (4 in our case).

Results including data transfer between RAM & CPU memory.

If the image is smaller than 1536x1024 pixels, it’s better to use
a single GPU because the time used in transfers is not
compensated by the use of more GPUs.
Otherwise, for sizes larger than 1536x1024, using more GPUs
improves the performance,

¢ Results when Cores of the CPUs and the GPUs
were simultaneously used.

In all cases it's best use CPU-GPU in
combination.

Image size Multicore MultiGPU Multicore
and
MultiGPU

96x64 6.82 6.83 8.37

192x128 9.45 10.69 15.54

384x256 10.57 12.60 20.01

768x512 12.40 13.51 37.13

1536x1024 14.88 18.86 42.39

3072x2048 15.96 24.34 43.78

3072x2048 15.96 24.10 69.91

6144x4096 16.12 47.12 68.46

�  for image sizes less than 768x512, it’s better to use one GPU.
�  for image sizes between 768x512 and 3072x2048 it’s better to

use 2 GPUs.
�  for image sizes greater than 6144x4096 it’s better to use 4

GPUs.

Results using CPU-GPU in combination. Table
showing how many cores and GPUs are used for each
image size, and which part of the images is assigned to
GPUs.

§  The part of the images assigned to GPU varies
according to the image size.

§  It seems that, for greater sizes, more work is to
be done on the GPUs.

CONTENT

¢  Introduction
¢ A parallel Denoising Algorithm.
¢ Multi-GPU and multi-core CPU

Implementations.
¢ Experimental Study
¢ Concluding remarks

CONCLUDING REMARKS

¢  Our implementation was developed to be
executed either on multi-core CPU, on several
GPUs, or using the CPU along with the GPUs.

¢ The results shown that this latter option (CPU
+GPUs) gives the best performance.

¢ On the way, the use of texture memory is better
than the use of shared memory.

¢ The final conclusion is that implementing image
denoising algorithms to be run on multi-core
CPUs and GPUs are very advisable. This opens
the door to use algorithms for real-time
processing.

¢  In future works, we plan to test our programs on
the last generation of GPU cards, and to adress
other common problems on images, such as edge
detection.

Thanks for your atention!!!!

