
PEER GROUP AND FUZZY METRIC TO 
REMOVE NOISE IN IMAGES USING 
HETEROGENEOUS COMPUTING. 

Ma. Guadalupe Sánchez -ITCG ,  

Vicente Vidal -UPV ,  

Jordi Bataller – UPV. 



CONTENT 

¢  Introduction 
¢ A parallel Denoising Algorithm. 
¢ Multi-GPU and multi-core CPU Implementation. 
¢ Experimental Study. 
¢ Concluding remarks. 



INTRODUCTION 
Image Denoising Image processing 

Affect the performance and  
accuracy of some processes 

Real-time processing Optimal implementation 

• video communication 
• biomedical science 
• image post-proccesing 
• surveillance 

Noise removal is a very  
important task in  
applications related to: 



Impulsive noise 

during the process of  
•  image formation,  
• storage or 
• transmission 

Malfunction 



The widespread model of 
Impulsive noise 

•  is the ”Salt and Pepper” model, or fixed-value 
noise.  

•  It considers a pixel is wrong, when its value is an 
extreme value within the signal range.  

•  We assume this model in our work. 



Many of the filters to remove impulsive noise in 
digital images have been designed, some of them 
are based on the concept of ”peer group”.  

W: 
xi 

xj 

Is the set of its neighbors 
that are similar to it, 
according to an chosen 
metric. (fuzzy measure, 
euclidea measure) 

These investigations have shown good results in  
Quality  

but they don’t seem to be appropriate for real-
time processing. 



GPU 

¢ Are currently a very popular 
platform for develop parallel 
applications, considering price 
and speed.  

¢ Are another widely used tools 
for parallel applications. 



When we use GPU, the assignation 
of the pixels on shared memory or 
texture memory, is with the 
purpose o f take the most 
advantage of the hardware. 

Our parallel version of filter is 
based on  
     •peer group and  
     •fuzzy metric 

Good quality results while  
trying to improve its 
performance,  
making them usable for  
real-time processing. 

GPU 
. 
. 
. 
GPU 

core 
. 
. 
. 
core 

CPU 
The 
implementation 
uses: 

Shared memory 

Texture memory 
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A PARALLEL DENOISING ALGORITHM 

¢ Our parallel algorithm uses the peer group and 
fuzzy metric. 

¢ The fuzzy metric between pixels xi and xj in the 
color image is given by: 

{ }.),(:),( dxxMWxdxP jiji ≥∈=

o  The peer group of a pixel xi is comprised by the 
pixels of a window centered in xi whose distance 
from xi exceeds d: 



¢ The denoising algorithm is as follows:  

Detection 

Filtering 

pixels are labeled either as:  
•  corrupted or  
•  uncorrupted. 

corrupted pixels  
are corrected. 

It has two  
main steps:  
 

pixel xi is declared as corrupted :  
 

if #P(xi, d) < (m + 1),  
 
where m is the voting threashold. 

If xi was previously marked as 
corrupted, it is replaced using the 
AMF.  
The old value is replaced by the 
new value. 
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MULTI-GPU AND MULTI-CORE CPU 
IMPLEMENTATIONS. 

¢ We have developed three implementations for 
two parallel architectures.  

OpenMP for multi-core CPU 

CUDA for multi-GPU 

CPU and GPU in combination 



¢  When only the CPU is used, some pixels are assigned 
to one core, and the rest to a second core, leaving the 
remaining cores (and the GPUs) idle. 

Image 

Multicore 

MultiGPU 



¢  When only the GPU is used, the image is divided into 
two parts, each one will be processed by a different 
GPU. 

Image 

Multicore 

MultiGPU 



¢  Using both, Cores in CPU and GPU, we made a 
partition of the image in eight horizontal blocks, to be 
processed by a combination of GPUs and cores in the 
CPU. 

Image 

Multicore 

MultiGPU 

D C 

B A 



¢  Therefore, before the actual processing starts in a GPU, the 
CPU control program must select  

¢  which GPU devices will be used,  
¢  copy data to them,  
¢  launch the kernels and  
¢  recover the results.  

Main memory (RAM) GPU memory 

Tasks to be executed by a GPU  
are coded into functions called:  
kernels 

Step 1. Detection 

Step 2. Filtering 
Synchronization 

kernel 

kernel 

won’t start until  
the first ends. 



For it, is necessary to consider:  
•  where to put the data and  
• how to access them,  
once they are on the GPU.  
 

Memories with 
different features  

(size, speed, 
access). 

GP
U 



o  Shared memory 
Global memory 

GPU 
shared memory 

block 

o  Texture memory Global memory 
GPU 

Thread. 
(but 
read-only mode) 

is available only to the set of threads being  
executed by the same multi-processor in a GPU. 
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EXPERIMENTAL STUDY 

¢ The first test was to compare the use of shared 
memory versus texture memory, using 1, 2 and 4 
GPUs. 

In the following tests, the texture memory is 
always used. 

Image size Texture 
memory 

Shared 
memory 

GPU 

6144 x 4096 20.66 17.34 1 

6144 x 4096 30.57 29.49 2 

6144 x 4096 47.12 41.37 4 



CPU GPU 

Intel Quad-Core Xeon 2 x 
2.2 GHz. 

GeFroce GT 120, 512 MB. 
4 Multiprocesors. 



¢ Performance results using CPU with 16 cores 
and different image sizes.  

For sizes larger than 384x256, the best results are 
obtained when all the 16 cores are used.  
Otherwise, it is better to use 8 cores only. 



¢ Using several GPUs…. 

Results using only the GPU, this is,  

without transfers RAM-GPU memory.  

It is clear that better outcomes occur when all the GPUs 
are used (4 in our case).  



Results including data transfer between RAM & CPU memory. 

If the image is smaller than 1536x1024 pixels, it’s better to use 
a single GPU because the time used in transfers is not 
compensated by the use of more GPUs.  
Otherwise, for sizes larger than 1536x1024, using more GPUs 
improves the performance,  



¢ Results when Cores of the CPUs and the GPUs 
were simultaneously used. 

In all cases it's best use CPU-GPU in 
combination. 

Image size Multicore MultiGPU Multicore 
and 
MultiGPU 

96x64 6.82 6.83 8.37 

192x128 9.45 10.69 15.54 

384x256 10.57 12.60 20.01 

768x512 12.40 13.51 37.13 

1536x1024 14.88 18.86 42.39 

3072x2048 15.96 24.34 43.78 

3072x2048 15.96 24.10 69.91 

6144x4096 16.12 47.12 68.46 



�  for image sizes less than 768x512, it’s better to use one GPU. 
�  for image sizes between 768x512 and 3072x2048 it’s better to 

use 2 GPUs. 
�  for image sizes greater than 6144x4096 it’s better to use 4 

GPUs. 

Results using CPU-GPU in combination. Table 
showing how many cores and GPUs are used for each 
image size, and which part of the images is assigned to 
GPUs. 

§  The part of the images assigned to GPU varies 
according to the image size.  

§  It seems that, for greater sizes, more work is to 
be done on the GPUs.  
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CONCLUDING REMARKS 

¢  Our implementation was developed to be 
executed either on multi-core CPU, on several 
GPUs, or using the CPU along with the GPUs.  

¢ The results shown that this latter option (CPU
+GPUs) gives the best performance.  

¢ On the way, the use of texture memory  is better 
than the use of shared memory. 



¢ The final conclusion is that implementing image 
denoising algorithms to be run on multi-core 
CPUs and GPUs are very advisable. This opens 
the door to use algorithms for real-time 
processing.  

¢  In future works, we plan to test our programs on 
the last generation of GPU cards, and to adress 
other common problems on images, such as edge 
detection. 



Thanks for your atention!!!! 


