2

Memory Manager Fun

Brian Barrett

Latency/Bandwidth, Oh My!

The Problem: NetPIPE as a benchmark

= Gives Latency /Bandwidth with high buffer
reuse

Many NICs require pre-pinning for RDMA
= Pinning expensive

= Max performance requires “lazy unpinning”
Lazy pinning leads to the dark side

= Calling free() on pinned memory bad

= MPI semantics don’t require special memory

Simple NetPIPE

Protocol Performance - Netgipe (g scale)

Bandwidth in VB

1 0 o0 100 “oocn 100000 16406
Message Size i Dytes

But remove the reuse....

Prolacnl periomanee - N hulfer ieuse (g scale)
820
700 -]
= BI0 - pipeling - /_,
2 copy InicLt
“g pipeline leave pinned f
» 500 - leave pinned ------- /7
& /
= am - /
3
EREI) o~
- a
& 200 - d
100 e
3 . = . s . .
1 10 001000 10000 100000 TR40R 18407

Message Size Byles

Our Strategy

Allow lazy unpinning of memory

= Linux and OS X only

Red/black tree to store pinned page lists
Intercept mal | oc/ free

= mal | oc allows optimized red/black storage
= f r ee intercepted to do unpinning
Performance cost...

= Searching for page...

= N times (once per existing mpool)

Linux

Two models: intercept free or mallopt
mallopt(M_TRIM_THRESHOLD, -1)

= Can lead to degenerate malloc cases

Intercept f r ee (GAH!)

= Linker tricks - provide our own copy of ptmalloc2

= Linker tricks are a bad idea!

= Only deregister when ptmalloc2 giving memory back

to OS

GLIBC malloc hooks not thread safe - not
useable

Mac OS X / Darwin

OS provides easy, thread safe mechanism

= Callbacks for malloc/free, not giving back to
oS

= No linker tricks

Could play linker tricks (LAM/MPI and
MPICH-GM do...)

= Requires flat namespace libraries

= Requires syncing source with Darwin releases

Conclusions

Easy to screw up

= Linker tricks are a bad idea

= Require simple linking strategies

Gain for most applications?
MPI_ALLOC_MEM/MPI_ALLOC_FREE
= Will pin buffer

= Probably indicates reuse from user

