double-complex precision

Functions

magma_int_t magma_z_precond (magma_z_sparse_matrix A, magma_z_vector b, magma_z_vector *x, magma_z_preconditioner *precond)
 For a given input matrix A and vectors x, y and the preconditioner parameters, the respective preconditioner is chosen.
magma_int_t magma_z_precondsetup (magma_z_sparse_matrix A, magma_z_vector b, magma_z_preconditioner *precond)
 For a given input matrix A and vectors x, y and the preconditioner parameters, the respective preconditioner is preprocessed.
magma_int_t magma_z_applyprecond (magma_z_sparse_matrix A, magma_z_vector b, magma_z_vector *x, magma_z_preconditioner *precond)
 For a given input matrix A and vectors x, y and the preconditioner parameters, the respective preconditioner is applied.
magma_int_t magma_z_applyprecond_left (magma_z_sparse_matrix A, magma_z_vector b, magma_z_vector *x, magma_z_preconditioner *precond)
 For a given input matrix A and vectors x, y and the preconditioner parameters, the respective left preconditioner is applied.
magma_int_t magma_z_applyprecond_right (magma_z_sparse_matrix A, magma_z_vector b, magma_z_vector *x, magma_z_preconditioner *precond)
 For a given input matrix A and vectors x, y and the preconditioner parameters, the respective right-preconditioner is applied.
magma_int_t magma_z_solver (magma_z_sparse_matrix A, magma_z_vector b, magma_z_vector *x, magma_zopts *zopts)
 ALlows the user to choose a solver.
magma_int_t magma_zresidual (magma_z_sparse_matrix A, magma_z_vector b, magma_z_vector x, double *res)
 Computes the residual ||b-Ax|| for a solution approximation x.
magma_int_t magma_z_vfree (magma_z_vector *x)
 Free the memory of a magma_z_vector.
magma_int_t magma_z_mfree (magma_z_sparse_matrix *A)
 Free the memory of a magma_z_sparse_matrix.
magma_int_t magma_z_vinit (magma_z_vector *x, magma_location_t mem_loc, magma_int_t num_rows, magmaDoubleComplex values)
 Initialize a magma_z_vector.
magma_int_t magma_zrowentries (magma_z_sparse_matrix *A)
 Checks the maximal number of nonzeros in a row of matrix A.
magma_int_t magma_zdiameter (magma_z_sparse_matrix *A)
 Computes the diameter of a sparse matrix and stores the value in diameter.
magma_int_t magma_z_csr_compressor (magmaDoubleComplex **val, magma_index_t **row, magma_index_t **col, magmaDoubleComplex **valn, magma_index_t **rown, magma_index_t **coln, magma_int_t *n)
 Helper function to compress CSR containing zero-entries.
magma_int_t magma_z_mconvert (magma_z_sparse_matrix A, magma_z_sparse_matrix *B, magma_storage_t old_format, magma_storage_t new_format)
 Converter between different sparse storage formats.
magma_int_t magma_z_LUmergein (magma_z_sparse_matrix L, magma_z_sparse_matrix U, magma_z_sparse_matrix *B)
 Merges an ILU factorization into one matrix.
magma_int_t magma_z_mtransfer (magma_z_sparse_matrix A, magma_z_sparse_matrix *B, magma_location_t src, magma_location_t dst)
 Copies a matrix from memory location src to memory location dst.
magma_int_t magma_z_vtransfer (magma_z_vector x, magma_z_vector *y, magma_location_t src, magma_location_t dst)
 Copies a vector from memory location src to memory location dst.
magma_int_t magma_z_vvisu (magma_z_vector x, magma_int_t offset, magma_int_t visulen)
 Visualizes part of a vector of type magma_z_vector.
magma_int_t magma_z_vread (magma_z_vector *x, magma_int_t length, char *filename)
 Reads in a double vector of length "length".
magma_int_t magma_zmgenerator (magma_int_t n, magma_int_t offdiags, magma_index_t *diag_offset, magmaDoubleComplex *diag_vals, magma_z_sparse_matrix *A)
 Generate a symmetric n x n CSR matrix for a stencil.
magma_int_t magma_zm_27stencil (magma_int_t n, magma_z_sparse_matrix *A)
 Generate a 27-point stencil for a 3D FD discretization.
magma_int_t magma_zm_5stencil (magma_int_t n, magma_z_sparse_matrix *A)
 Generate a 5-point stencil for a 2D FD discretization.
magma_int_t magma_zmdiff (magma_z_sparse_matrix A, magma_z_sparse_matrix B, real_Double_t *res)
 Computes the Frobenius norm of the difference between the CSR matrices A and B.
magma_int_t magma_zmscale (magma_z_sparse_matrix *A, magma_scale_t scaling)
 Scales a matrix.
magma_int_t magma_zmdiagadd (magma_z_sparse_matrix *A, magmaDoubleComplex add)
 Adds a multiple of the Identity matrix to a matrix: A = A+add * I.
magma_int_t magma_z_initP2P (magma_int_t *bw_bmark, magma_int_t *num_gpus)
 Initializes P2P communication between GPUs.
magma_int_t magma_zsolverinfo (magma_z_solver_par *solver_par, magma_z_preconditioner *precond_par)
 Prints information about a previously called solver.
magma_int_t magma_zsolverinfo_free (magma_z_solver_par *solver_par, magma_z_preconditioner *precond_par)
 Frees any memory assocoiated with the verbose mode of solver_par.
magma_int_t magma_zsolverinfo_init (magma_z_solver_par *solver_par, magma_z_preconditioner *precond_par)
 Initializes all solver and preconditioner parameters.
magma_int_t z_transpose_csr (magma_int_t n_rows, magma_int_t n_cols, magma_int_t nnz, magmaDoubleComplex *val, magma_index_t *row, magma_index_t *col, magma_int_t *new_n_rows, magma_int_t *new_n_cols, magma_int_t *new_nnz, magmaDoubleComplex **new_val, magma_index_t **new_row, magma_index_t **new_col)
 Transposes a matrix stored in CSR format.
magma_int_t magma_z_csrtranspose (magma_z_sparse_matrix A, magma_z_sparse_matrix *B)
 Helper function to transpose CSR matrix.
magma_int_t magma_z_cucsrtranspose (magma_z_sparse_matrix A, magma_z_sparse_matrix *B)
 Helper function to transpose CSR matrix.
magma_int_t read_z_csr_from_binary (magma_int_t *n_row, magma_int_t *n_col, magma_int_t *nnz, magmaDoubleComplex **val, magma_index_t **row, magma_index_t **col, const char *filename)
 Reads in a matrix stored in coo format from a binary and converts it into CSR format.
magma_int_t read_z_csr_from_mtx (magma_storage_t *type, magma_location_t *location, magma_int_t *n_row, magma_int_t *n_col, magma_int_t *nnz, magmaDoubleComplex **val, magma_index_t **row, magma_index_t **col, const char *filename)
 Reads in a matrix stored in coo format from a Matrix Market (.mtx) file and converts it into CSR format.
magma_int_t write_z_csr_mtx (magma_int_t n_row, magma_int_t n_col, magma_int_t nnz, magmaDoubleComplex **val, magma_index_t **row, magma_index_t **col, magma_order_t MajorType, const char *filename)
 Writes a CSR matrix to a file using Matrix Market format.
magma_int_t print_z_csr_mtx (magma_int_t n_row, magma_int_t n_col, magma_int_t nnz, magmaDoubleComplex **val, magma_index_t **row, magma_index_t **col, magma_order_t MajorType)
 Prints a CSR matrix in Matrix Market format.
magma_int_t print_z_csr (magma_int_t n_row, magma_int_t n_col, magma_int_t nnz, magmaDoubleComplex **val, magma_index_t **row, magma_index_t **col)
 Prints a CSR matrix in CSR format.
magma_int_t magma_z_mvisu (magma_z_sparse_matrix A)
 Prints a sparse matrix in CSR format.
magma_int_t magma_z_csr_mtx (magma_z_sparse_matrix *A, const char *filename)
 Reads in a matrix stored in coo format from a Matrix Market (.mtx) file and converts it into CSR format.
magma_int_t magma_z_csr_mtxsymm (magma_z_sparse_matrix *A, const char *filename)
 Reads in a SYMMETRIC matrix stored in coo format from a Matrix Market (.mtx) file and converts it into CSR format.
void magmablas_dlag2s_sparse (magma_int_t M, magma_int_t N, const double *A, magma_int_t lda, float *SA, magma_int_t ldsa, magma_int_t *info)
 DLAG2S converts a DOUBLE PRECISION matrix A to a SINGLE PRECISION matrix SA.
magma_int_t magma_vector_dlag2s (magma_d_vector x, magma_s_vector *y)
 convertes magma_d_vector from Z to C
magma_int_t magma_z_spmv_shift (magmaDoubleComplex alpha, magma_z_sparse_matrix A, magmaDoubleComplex lambda, magma_z_vector x, magmaDoubleComplex beta, magma_int_t offset, magma_int_t blocksize, magma_index_t *add_rows, magma_z_vector y)
 For a given input matrix A and vectors x, y and scalars alpha, beta the wrapper determines the suitable SpMV computing y = alpha * ( A - lambda I ) * x + beta * y.
magma_int_t magma_vector_zlag2c (magma_z_vector x, magma_c_vector *y)
 convertes magma_z_vector from Z to C
void magmablas_zlag2c_sparse (magma_int_t M, magma_int_t N, const magmaDoubleComplex *A, magma_int_t lda, magmaFloatComplex *SA, magma_int_t ldsa, magma_int_t *info)
 ZLAG2C converts a COMPLEX_16 matrix A to a COMPLEX matrix SA.
magma_int_t magma_zlobpcg_res (magma_int_t num_rows, magma_int_t num_vecs, double *evalues, magmaDoubleComplex *X, magmaDoubleComplex *R, double *res)
 This routine computes for Block-LOBPCG, the set of residuals.
magma_int_t magma_zlobpcg_shift (magma_int_t num_rows, magma_int_t num_vecs, magma_int_t shift, magmaDoubleComplex *x)
 For a Block-LOBPCG, the set of residuals (entries consecutive in memory) shrinks and the vectors are shifted in case shift residuals drop below threshold.
magma_int_t magma_zcopyscale (int n, int k, magmaDoubleComplex *r, magmaDoubleComplex *v, magmaDoubleComplex *skp)
 Computes the correction term of the pipelined GMRES according to P.

Function Documentation

magma_int_t magma_vector_dlag2s ( magma_d_vector  x,
magma_s_vector *  y 
)

convertes magma_d_vector from Z to C

Parameters:
x magma_d_vector input vector descriptor
y magma_s_vector* output vector descriptor
magma_int_t magma_vector_zlag2c ( magma_z_vector  x,
magma_c_vector *  y 
)

convertes magma_z_vector from Z to C

Parameters:
x magma_z_vector input vector descriptor
y magma_c_vector* output vector descriptor
magma_int_t magma_z_applyprecond ( magma_z_sparse_matrix  A,
magma_z_vector  b,
magma_z_vector *  x,
magma_z_preconditioner *  precond 
)

For a given input matrix A and vectors x, y and the preconditioner parameters, the respective preconditioner is applied.

E.g. for Jacobi: the scaling-vetor, for ILU the triangular solves.

Parameters:
A magma_z_sparse_matrix sparse matrix A
b magma_z_vector input vector b
x magma_z_vector* output vector x
precond magma_z_preconditioner preconditioner
magma_int_t magma_z_applyprecond_left ( magma_z_sparse_matrix  A,
magma_z_vector  b,
magma_z_vector *  x,
magma_z_preconditioner *  precond 
)

For a given input matrix A and vectors x, y and the preconditioner parameters, the respective left preconditioner is applied.

E.g. for Jacobi: the scaling-vetor, for ILU the left triangular solve.

Parameters:
A magma_z_sparse_matrix sparse matrix A
b magma_z_vector input vector b
x magma_z_vector* output vector x
precond magma_z_preconditioner preconditioner
magma_int_t magma_z_applyprecond_right ( magma_z_sparse_matrix  A,
magma_z_vector  b,
magma_z_vector *  x,
magma_z_preconditioner *  precond 
)

For a given input matrix A and vectors x, y and the preconditioner parameters, the respective right-preconditioner is applied.

E.g. for Jacobi: the scaling-vetor, for ILU the right triangular solve.

Parameters:
A magma_z_sparse_matrix sparse matrix A
b magma_z_vector input vector b
x magma_z_vector* output vector x
precond magma_z_preconditioner preconditioner
magma_int_t magma_z_csr_compressor ( magmaDoubleComplex **  val,
magma_index_t **  row,
magma_index_t **  col,
magmaDoubleComplex **  valn,
magma_index_t **  rown,
magma_index_t **  coln,
magma_int_t *  n 
)

Helper function to compress CSR containing zero-entries.

Parameters:
val magmaDoubleComplex** input val pointer to compress
row magma_int_t** input row pointer to modify
col magma_int_t** input col pointer to compress
valn magmaDoubleComplex** output val pointer
rown magma_int_t** output row pointer
coln magma_int_t** output col pointer
n magma_int_t* number of rows in matrix
magma_int_t magma_z_csr_mtx ( magma_z_sparse_matrix *  A,
const char *  filename 
)

Reads in a matrix stored in coo format from a Matrix Market (.mtx) file and converts it into CSR format.

It duplicates the off-diagonal entries in the symmetric case.

Parameters:
A magma_z_sparse_matrix* matrix in magma sparse matrix format
filename const char* filname of the mtx matrix
magma_int_t magma_z_csr_mtxsymm ( magma_z_sparse_matrix *  A,
const char *  filename 
)

Reads in a SYMMETRIC matrix stored in coo format from a Matrix Market (.mtx) file and converts it into CSR format.

It does not duplicate the off-diagonal entries!

Parameters:
A magma_z_sparse_matrix* matrix in magma sparse matrix format
filename const char* filname of the mtx matrix
magma_int_t magma_z_csrtranspose ( magma_z_sparse_matrix  A,
magma_z_sparse_matrix *  B 
)

Helper function to transpose CSR matrix.

Parameters:
A magma_z_sparse_matrix input matrix (CSR)
B magma_z_sparse_matrix* output matrix (CSR)
magma_int_t magma_z_cucsrtranspose ( magma_z_sparse_matrix  A,
magma_z_sparse_matrix *  B 
)

Helper function to transpose CSR matrix.

Using the CUSPARSE CSR2CSC function.

Parameters:
A magma_z_sparse_matrix input matrix (CSR)
B magma_z_sparse_matrix* output matrix (CSR)
magma_int_t magma_z_initP2P ( magma_int_t *  bw_bmark,
magma_int_t *  num_gpus 
)

Initializes P2P communication between GPUs.

Parameters:
bw_bmark magma_int_t* input: run the benchmark (1/0)
num_gpus magma_int_t* output: number of GPUs
magma_int_t magma_z_LUmergein ( magma_z_sparse_matrix  L,
magma_z_sparse_matrix  U,
magma_z_sparse_matrix *  B 
)

Merges an ILU factorization into one matrix.

works only for the symmetric case!!!

Parameters:
L magma_z_sparse_matrix sparse matrix L
U magma_z_sparse_matrix sparse matrix U
B magma_z_sparse_matrix* output sparse matrix B
magma_int_t magma_z_mconvert ( magma_z_sparse_matrix  A,
magma_z_sparse_matrix *  B,
magma_storage_t  old_format,
magma_storage_t  new_format 
)

Converter between different sparse storage formats.

Parameters:
A magma_z_sparse_matrix sparse matrix A
B magma_z_sparse_matrix* copy of A in new format
old_format magma_storage_t original storage format
new_format magma_storage_t new storage format
magma_int_t magma_z_mfree ( magma_z_sparse_matrix *  A  ) 

Free the memory of a magma_z_sparse_matrix.

Parameters:
A magma_z_sparse_matrix* matrix to free
magma_int_t magma_z_mtransfer ( magma_z_sparse_matrix  A,
magma_z_sparse_matrix *  B,
magma_location_t  src,
magma_location_t  dst 
)

Copies a matrix from memory location src to memory location dst.

Parameters:
A magma_z_sparse_matrix sparse matrix A
B magma_z_sparse_matrix* copy of A
src magma_location_t original location A
dst magma_location_t location of the copy of A
magma_int_t magma_z_mvisu ( magma_z_sparse_matrix  A  ) 

Prints a sparse matrix in CSR format.

Parameters:
A magma_z_sparse_matrix sparse matrix in Magma_CSR format
magma_int_t magma_z_precond ( magma_z_sparse_matrix  A,
magma_z_vector  b,
magma_z_vector *  x,
magma_z_preconditioner *  precond 
)

For a given input matrix A and vectors x, y and the preconditioner parameters, the respective preconditioner is chosen.

It approximates x for A x = y.

Parameters:
A magma_z_sparse_matrix sparse matrix A
b magma_z_vector input vector b
x magma_z_vector* output vector x
precond magma_z_preconditioner preconditioner
magma_int_t magma_z_precondsetup ( magma_z_sparse_matrix  A,
magma_z_vector  b,
magma_z_preconditioner *  precond 
)

For a given input matrix A and vectors x, y and the preconditioner parameters, the respective preconditioner is preprocessed.

E.g. for Jacobi: the scaling-vetor, for ILU the factorization.

Parameters:
A magma_z_sparse_matrix sparse matrix A
b magma_z_vector input vector y
precond magma_z_preconditioner preconditioner
magma_int_t magma_z_solver ( magma_z_sparse_matrix  A,
magma_z_vector  b,
magma_z_vector *  x,
magma_zopts *  zopts 
)

ALlows the user to choose a solver.

Parameters:
A magma_z_sparse_matrix sparse matrix A
b magma_z_vector input vector b
x magma_z_vector* output vector x
zopts magma_zopts options for solver and preconditioner
magma_int_t magma_z_spmv_shift ( magmaDoubleComplex  alpha,
magma_z_sparse_matrix  A,
magmaDoubleComplex  lambda,
magma_z_vector  x,
magmaDoubleComplex  beta,
magma_int_t  offset,
magma_int_t  blocksize,
magma_index_t *  add_rows,
magma_z_vector  y 
)

For a given input matrix A and vectors x, y and scalars alpha, beta the wrapper determines the suitable SpMV computing y = alpha * ( A - lambda I ) * x + beta * y.

Parameters:
alpha magmaDoubleComplex scalar alpha
A magma_z_sparse_matrix sparse matrix A
lambda magmaDoubleComplex scalar lambda
x magma_z_vector input vector x
beta magmaDoubleComplex scalar beta
offset magma_int_t in case not the main diagonal is scaled
blocksize magma_int_t in case of processing multiple vectors
add_rows magma_int_t* in case the matrixpowerskernel is used
y magma_z_vector output vector y
magma_int_t magma_z_vfree ( magma_z_vector *  x  ) 

Free the memory of a magma_z_vector.

Parameters:
x magma_z_vector* vector to free
magma_int_t magma_z_vinit ( magma_z_vector *  x,
magma_location_t  mem_loc,
magma_int_t  num_rows,
magmaDoubleComplex  values 
)

Initialize a magma_z_vector.

Parameters:
x magma_z_vector vector to initialize
mem_loc magma_location_t memory for vector
num_rows magma_int_t desired length of vector
values magmaDoubleComplex entries in vector
magma_int_t magma_z_vread ( magma_z_vector *  x,
magma_int_t  length,
char *  filename 
)

Reads in a double vector of length "length".

Parameters:
x magma_z_vector vector to read in
length magma_int_t length of vector
filename char* file where vector is stored
magma_int_t magma_z_vtransfer ( magma_z_vector  x,
magma_z_vector *  y,
magma_location_t  src,
magma_location_t  dst 
)

Copies a vector from memory location src to memory location dst.

Parameters:
x magma_z_vector vector x
y magma_z_vector* copy of x
src magma_location_t original location x
dst magma_location_t location of the copy of x
magma_int_t magma_z_vvisu ( magma_z_vector  x,
magma_int_t  offset,
magma_int_t  visulen 
)

Visualizes part of a vector of type magma_z_vector.

With input vector x , offset, visulen, the entries offset - (offset + visulen) of x are visualized.

Parameters:
x magma_z_vector vector to visualize
offset magma_int_t start inex of visualization
visulen magma_int_t number of entries to visualize
magma_int_t magma_zcopyscale ( int  n,
int  k,
magmaDoubleComplex *  r,
magmaDoubleComplex *  v,
magmaDoubleComplex *  skp 
)

Computes the correction term of the pipelined GMRES according to P.

Ghysels and scales and copies the new search direction

Returns the vector v = r/ ( skp[k] - (sum_i=1^k skp[i]^2) ) .

Parameters:
n int length of v_i
k int # skp entries v_i^T * r ( without r )
r magmaDoubleComplex* vector of length n
v magmaDoubleComplex* vector of length n
skp magmaDoubleComplex* array of parameters
magma_int_t magma_zdiameter ( magma_z_sparse_matrix *  A  ) 

Computes the diameter of a sparse matrix and stores the value in diameter.

Parameters:
A magma_z_sparse_matrix* sparse matrix
magma_int_t magma_zlobpcg_res ( magma_int_t  num_rows,
magma_int_t  num_vecs,
double *  evalues,
magmaDoubleComplex *  X,
magmaDoubleComplex *  R,
double *  res 
)

This routine computes for Block-LOBPCG, the set of residuals.

R = Ax - x evalues It replaces: for(int i=0; i < n; i++){ magma_zaxpy(m, MAGMA_Z_MAKE(-evalues[i],0),blockX+i*m,1,blockR+i*m,1); } The memory layout of x is:

/ x1[0] x2[0] x3[0] \ | x1[1] x2[1] x3[1] | x = | x1[2] x2[2] x3[2] | = x1[0] x1[1] x1[2] x1[3] x1[4] x2[0] x2[1] . | x1[3] x2[3] x3[3] | \ x1[4] x2[4] x3[4] /

Parameters:
num_rows magma_int_t number of rows
num_vecs magma_int_t number of vectors
evalues double* array of eigenvalues/approximations
X magmaDoubleComplex* block of eigenvector approximations
R magmaDoubleComplex* block of residuals
res double* array of residuals
magma_int_t magma_zlobpcg_shift ( magma_int_t  num_rows,
magma_int_t  num_vecs,
magma_int_t  shift,
magmaDoubleComplex *  x 
)

For a Block-LOBPCG, the set of residuals (entries consecutive in memory) shrinks and the vectors are shifted in case shift residuals drop below threshold.

The memory layout of x is:

/ x1[0] x2[0] x3[0] \ | x1[1] x2[1] x3[1] | x = | x1[2] x2[2] x3[2] | = x1[0] x2[0] x3[0] x1[1] x2[1] x3[1] x1[2] . | x1[3] x2[3] x3[3] | \ x1[4] x2[4] x3[4] /

Parameters:
num_rows magma_int_t number of rows
num_vecs magma_int_t number of vectors
shift magma_int_t shift number
x magmaDoubleComplex* input/output vector x
magma_int_t magma_zm_27stencil ( magma_int_t  n,
magma_z_sparse_matrix *  A 
)

Generate a 27-point stencil for a 3D FD discretization.

Parameters:
n magma_int_t number of rows
A magma_z_sparse_matrix* matrix to generate
magma_int_t magma_zm_5stencil ( magma_int_t  n,
magma_z_sparse_matrix *  A 
)

Generate a 5-point stencil for a 2D FD discretization.

Parameters:
n magma_int_t number of rows
A magma_z_sparse_matrix* matrix to generate
magma_int_t magma_zmdiagadd ( magma_z_sparse_matrix *  A,
magmaDoubleComplex  add 
)

Adds a multiple of the Identity matrix to a matrix: A = A+add * I.

Parameters:
A magma_z_sparse_matrix* input/output matrix
add magmaDoubleComplex scaling for the identity matrix
magma_int_t magma_zmdiff ( magma_z_sparse_matrix  A,
magma_z_sparse_matrix  B,
real_Double_t *  res 
)

Computes the Frobenius norm of the difference between the CSR matrices A and B.

They do not need to share the same sparsity pattern!

res = ||A-B||_F = sqrt( sum_ij (A_ij-B_ij)^2 )

Parameters:
A magma_z_sparse_matrix sparse matrix in CSR
B magma_z_sparse_matrix sparse matrix in CSR
res real_Double_t* residual
magma_int_t magma_zmgenerator ( magma_int_t  n,
magma_int_t  offdiags,
magma_index_t *  diag_offset,
magmaDoubleComplex *  diag_vals,
magma_z_sparse_matrix *  A 
)

Generate a symmetric n x n CSR matrix for a stencil.

Parameters:
n magma_int_t number of rows
offdiags magma_int_t number of offdiagonals
diag_offset magma_int_t* array containing the offsets

(length offsets+1)

Parameters:
diag_vals magmaDoubleComplex* array containing the values

(length offsets+1)

Parameters:
A magma_z_sparse_matrix* matrix to generate
magma_int_t magma_zmscale ( magma_z_sparse_matrix *  A,
magma_scale_t  scaling 
)

Scales a matrix.

Parameters:
A magma_z_sparse_matrix* input/output matrix
scaling magma_scale_t scaling type (unit rownorm / unit diagonal)
magma_int_t magma_zresidual ( magma_z_sparse_matrix  A,
magma_z_vector  b,
magma_z_vector  x,
double *  res 
)

Computes the residual ||b-Ax|| for a solution approximation x.

Parameters:
A magma_z_sparse_matrix input matrix A
b magma_z_vector RHS b
x magma_z_vector solution approximation
res magmaDoubleComplex* return residual
magma_int_t magma_zrowentries ( magma_z_sparse_matrix *  A  ) 

Checks the maximal number of nonzeros in a row of matrix A.

Inserts the data into max_nnz_row.

Parameters:
A magma_z_sparse_matrix* sparse matrix
magma_int_t magma_zsolverinfo ( magma_z_solver_par *  solver_par,
magma_z_preconditioner *  precond_par 
)

Prints information about a previously called solver.

Parameters:
solver_par magma_z_solver_par* structure containing all solver information
precond_par magma_z_preconditioner* structure containing all preconditioner information
magma_int_t magma_zsolverinfo_free ( magma_z_solver_par *  solver_par,
magma_z_preconditioner *  precond_par 
)

Frees any memory assocoiated with the verbose mode of solver_par.

The other values are set to default.

Parameters:
solver_par magma_z_solver_par* structure containing all solver information
precond_par magma_z_preconditioner* structure containing all preconditioner information
magma_int_t magma_zsolverinfo_init ( magma_z_solver_par *  solver_par,
magma_z_preconditioner *  precond_par 
)

Initializes all solver and preconditioner parameters.

Parameters:
solver_par magma_z_solver_par* structure containing all solver information
precond_par magma_z_preconditioner* structure containing all preconditioner information
void magmablas_dlag2s_sparse ( magma_int_t  M,
magma_int_t  N,
const double *  A,
magma_int_t  lda,
float *  SA,
magma_int_t  ldsa,
magma_int_t *  info 
)

DLAG2S converts a DOUBLE PRECISION matrix A to a SINGLE PRECISION matrix SA.

RMAX is the overflow for the SINGLE PRECISION arithmetic. DLAG2S checks that all the entries of A are between -RMAX and RMAX. If not the convertion is aborted and a flag is raised.

Parameters:
[in] M INTEGER The number of lines of the matrix A. M >= 0.
[in] N INTEGER The number of columns of the matrix A. N >= 0.
[in] A DOUBLE PRECISION array, dimension (LDA,N) On entry, the M-by-N coefficient matrix A.
[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,M).
[out] SA SINGLE PRECISION array, dimension (LDSA,N) On exit, if INFO=0, the M-by-N coefficient matrix SA; if INFO>0, the content of SA is unspecified.
[in] ldsa INTEGER The leading dimension of the array SA. LDSA >= max(1,M).
[out] info INTEGER

  • = 0: successful exit.
  • < 0: if INFO = -i, the i-th argument had an illegal value
  • = 1: an entry of the matrix A is greater than the SINGLE PRECISION overflow threshold, in this case, the content of SA in exit is unspecified.
void magmablas_zlag2c_sparse ( magma_int_t  M,
magma_int_t  N,
const magmaDoubleComplex *  A,
magma_int_t  lda,
magmaFloatComplex *  SA,
magma_int_t  ldsa,
magma_int_t *  info 
)

ZLAG2C converts a COMPLEX_16 matrix A to a COMPLEX matrix SA.

RMAX is the overflow for the COMPLEX arithmetic. ZLAG2C checks that all the entries of A are between -RMAX and RMAX. If not the convertion is aborted and a flag is raised.

Parameters:
[in] M INTEGER The number of lines of the matrix A. M >= 0.
[in] N INTEGER The number of columns of the matrix A. N >= 0.
[in] A COMPLEX_16 array, dimension (LDA,N) On entry, the M-by-N coefficient matrix A.
[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,M).
[out] SA COMPLEX array, dimension (LDSA,N) On exit, if INFO=0, the M-by-N coefficient matrix SA; if INFO>0, the content of SA is unspecified.
[in] ldsa INTEGER The leading dimension of the array SA. LDSA >= max(1,M).
[out] info INTEGER

  • = 0: successful exit.
  • < 0: if INFO = -i, the i-th argument had an illegal value
  • = 1: an entry of the matrix A is greater than the COMPLEX overflow threshold, in this case, the content of SA in exit is unspecified.
magma_int_t print_z_csr ( magma_int_t  n_row,
magma_int_t  n_col,
magma_int_t  nnz,
magmaDoubleComplex **  val,
magma_index_t **  row,
magma_index_t **  col 
)

Prints a CSR matrix in CSR format.

Parameters:
n_row magma_int_t* number of rows in matrix
n_col magma_int_t* number of columns in matrix
nnz magma_int_t* number of nonzeros in matrix
val magmaDoubleComplex** value array of CSR
row magma_index_t** row pointer of CSR
col magma_index_t** column indices of CSR
magma_int_t print_z_csr_mtx ( magma_int_t  n_row,
magma_int_t  n_col,
magma_int_t  nnz,
magmaDoubleComplex **  val,
magma_index_t **  row,
magma_index_t **  col,
magma_order_t  MajorType 
)

Prints a CSR matrix in Matrix Market format.

Parameters:
n_row magma_int_t* number of rows in matrix
n_col magma_int_t* number of columns in matrix
nnz magma_int_t* number of nonzeros in matrix
val magmaDoubleComplex** value array of CSR
row magma_index_t** row pointer of CSR
col magma_index_t** column indices of CSR
MajorType magma_index_t Row or Column sort default: 0 = RowMajor, 1 = ColMajor
magma_int_t read_z_csr_from_binary ( magma_int_t *  n_row,
magma_int_t *  n_col,
magma_int_t *  nnz,
magmaDoubleComplex **  val,
magma_index_t **  row,
magma_index_t **  col,
const char *  filename 
)

Reads in a matrix stored in coo format from a binary and converts it into CSR format.

It duplicates the off-diagonal entries in the symmetric case.

Parameters:
n_row magma_int_t* number of rows in matrix
n_col magma_int_t* number of columns in matrix
nnz magma_int_t* number of nonzeros in matrix
val magmaDoubleComplex** value array of CSR output
row magma_index_t** row pointer of CSR output
col magma_index_t** column indices of CSR output
filename const char* filname of the mtx matrix
magma_int_t read_z_csr_from_mtx ( magma_storage_t *  type,
magma_location_t *  location,
magma_int_t *  n_row,
magma_int_t *  n_col,
magma_int_t *  nnz,
magmaDoubleComplex **  val,
magma_index_t **  row,
magma_index_t **  col,
const char *  filename 
)

Reads in a matrix stored in coo format from a Matrix Market (.mtx) file and converts it into CSR format.

It duplicates the off-diagonal entries in the symmetric case.

Parameters:
type magma_storage_t* storage type of matrix
location magma_location_t* location of matrix
n_row magma_int_t* number of rows in matrix
n_col magma_int_t* number of columns in matrix
nnz magma_int_t* number of nonzeros in matrix
val magmaDoubleComplex** value array of CSR output
row magma_index_t** row pointer of CSR output
col magma_index_t** column indices of CSR output
filename const char* filname of the mtx matrix
magma_int_t write_z_csr_mtx ( magma_int_t  n_row,
magma_int_t  n_col,
magma_int_t  nnz,
magmaDoubleComplex **  val,
magma_index_t **  row,
magma_index_t **  col,
magma_order_t  MajorType,
const char *  filename 
)

Writes a CSR matrix to a file using Matrix Market format.

Parameters:
n_row magma_int_t* number of rows in matrix
n_col magma_int_t* number of columns in matrix
nnz magma_int_t* number of nonzeros in matrix
val magmaDoubleComplex** value array of CSR
row magma_index_t** row pointer of CSR
col magma_index_t** column indices of CSR
MajorType magma_index_t Row or Column sort default: 0 = RowMajor, 1 = ColMajor
filename const char* output-filname of the mtx matrix
magma_int_t z_transpose_csr ( magma_int_t  n_rows,
magma_int_t  n_cols,
magma_int_t  nnz,
magmaDoubleComplex *  val,
magma_index_t *  row,
magma_index_t *  col,
magma_int_t *  new_n_rows,
magma_int_t *  new_n_cols,
magma_int_t *  new_nnz,
magmaDoubleComplex **  new_val,
magma_index_t **  new_row,
magma_index_t **  new_col 
)

Transposes a matrix stored in CSR format.

Parameters:
n_rows magma_int_t number of rows in input matrix
n_cols magma_int_t number of columns in input matrix
nnz magma_int_t number of nonzeros in input matrix
val magmaDoubleComplex* value array of input matrix
row magma_index_t* row pointer of input matrix
col magma_index_t* column indices of input matrix
new_n_rows magma_index_t* number of rows in transposed matrix
new_n_cols magma_index_t* number of columns in transposed matrix
new_nnz magma_index_t* number of nonzeros in transposed matrix
new_val magmaDoubleComplex** value array of transposed matrix
new_row magma_index_t** row pointer of transposed matrix
new_col magma_index_t** column indices of transposed matrix

Generated on 17 Sep 2014 for MAGMA by  doxygen 1.6.1