Functions | |
void | magma_dcompactActive (magma_int_t m, magma_int_t n, double *dA, magma_int_t ldda, magma_index_t *active) |
ZCOMPACTACTIVE takes a set of n vectors of size m (in dA) and an array of 1s and 0sindicating which vectors to compact (for 1s) and which to disregard (for 0s). | |
magma_int_t | magma_dgeelltmv (magma_trans_t transA, magma_int_t m, magma_int_t n, magma_int_t nnz_per_row, double alpha, double *d_val, magma_index_t *d_colind, double *d_x, double beta, double *d_y) |
This routine computes y = alpha * A^t * x + beta * y on the GPU. | |
magma_int_t | magma_djacobi_diagscal (int num_rows, double *b, double *d, double *c) |
Prepares the Jacobi Iteration according to x^(k+1) = D^(-1) * b - D^(-1) * (L+U) * x^k x^(k+1) = c - M * x^k. | |
magma_int_t | magma_dgemvmdot (int n, int k, double *v, double *r, double *d1, double *d2, double *skp) |
This is an extension of the merged dot product above by chunking the set of vectors v_i such that the data always fits into cache. | |
magma_int_t | magma_d_spmv (double alpha, magma_d_sparse_matrix A, magma_d_vector x, double beta, magma_d_vector y) |
For a given input matrix A and vectors x, y and scalars alpha, beta the wrapper determines the suitable SpMV computing y = alpha * A * x + beta * y. |
magma_int_t magma_d_spmv | ( | double | alpha, | |
magma_d_sparse_matrix | A, | |||
magma_d_vector | x, | |||
double | beta, | |||
magma_d_vector | y | |||
) |
For a given input matrix A and vectors x, y and scalars alpha, beta the wrapper determines the suitable SpMV computing y = alpha * A * x + beta * y.
alpha | double scalar alpha | |
A | magma_d_sparse_matrix sparse matrix A | |
x | magma_d_vector input vector x | |
beta | double scalar beta | |
y | magma_d_vector output vector y |
void magma_dcompactActive | ( | magma_int_t | m, | |
magma_int_t | n, | |||
double * | dA, | |||
magma_int_t | ldda, | |||
magma_index_t * | active | |||
) |
ZCOMPACTACTIVE takes a set of n vectors of size m (in dA) and an array of 1s and 0sindicating which vectors to compact (for 1s) and which to disregard (for 0s).
[in] | m | INTEGER The number of rows of the matrix dA. M >= 0. |
[in] | n | INTEGER The number of columns of the matrix dA. N >= 0. |
[in,out] | dA | COMPLEX DOUBLE PRECISION array, dimension (LDDA,N) The m by n matrix dA. |
[in] | ldda | INTEGER The leading dimension of the array dA. LDDA >= max(1,M). |
[in] | active | INTEGER array, dimension N A mask of 1s and 0s showing if a vector remains or has been removed |
magma_int_t magma_dgeelltmv | ( | magma_trans_t | transA, | |
magma_int_t | m, | |||
magma_int_t | n, | |||
magma_int_t | nnz_per_row, | |||
double | alpha, | |||
double * | d_val, | |||
magma_index_t * | d_colind, | |||
double * | d_x, | |||
double | beta, | |||
double * | d_y | |||
) |
This routine computes y = alpha * A^t * x + beta * y on the GPU.
Input format is ELL.
transA | magma_trans_t transposition parameter for A | |
m | magma_int_t number of rows in A | |
n | magma_int_t number of columns in A | |
nnz_per_row | magma_int_t number of elements in the longest row | |
alpha | double scalar multiplier | |
d_val | double* array containing values of A in ELL | |
d_colind | magma_int_t* columnindices of A in ELL | |
d_x | double* input vector x | |
beta | double scalar multiplier | |
d_y | double* input/output vector y |
magma_int_t magma_dgemvmdot | ( | int | n, | |
int | k, | |||
double * | v, | |||
double * | r, | |||
double * | d1, | |||
double * | d2, | |||
double * | skp | |||
) |
This is an extension of the merged dot product above by chunking the set of vectors v_i such that the data always fits into cache.
It is equivalent to a matrix vecor product Vr where V contains few rows and many columns. The computation is the same:
skp = ( <v_0,r>, <v_1,r>, .. )
Returns the vector skp.
n | int length of v_i and r | |
k | int # vectors v_i | |
v | double* v = (v_0 .. v_i.. v_k) | |
r | double* r | |
d1 | double* workspace | |
d2 | double* workspace | |
skp | double* vector[k] of scalar products (<v_i,r>...) |
magma_int_t magma_djacobi_diagscal | ( | int | num_rows, | |
double * | b, | |||
double * | d, | |||
double * | c | |||
) |
Prepares the Jacobi Iteration according to x^(k+1) = D^(-1) * b - D^(-1) * (L+U) * x^k x^(k+1) = c - M * x^k.
Returns the vector c. It calls a GPU kernel
num_rows | magma_int_t number of rows | |
b | magma_d_vector RHS b | |
d | magma_d_vector vector with diagonal entries | |
c | magma_d_vector* c = D^(-1) * b |