double precision
[Level-2 auxiliary]

Functions

void magma_dprint (magma_int_t m, magma_int_t n, const double *A, magma_int_t lda)
 magma_dprint prints a matrix that is located on the CPU host.
void magma_dprint_gpu (magma_int_t m, magma_int_t n, const double *dA, magma_int_t ldda)
 magma_dprint_gpu prints a matrix that is located on the GPU device.
magma_int_t magma_dnan_inf (magma_uplo_t uplo, magma_int_t m, magma_int_t n, const double *A, magma_int_t lda, magma_int_t *cnt_nan, magma_int_t *cnt_inf)
 magma_dnan_inf checks a matrix that is located on the CPU host for NAN (not-a-number) and INF (infinity) values.
magma_int_t magma_dnan_inf_gpu (magma_uplo_t uplo, magma_int_t m, magma_int_t n, const double *dA, magma_int_t ldda, magma_int_t *cnt_nan, magma_int_t *cnt_inf)
 magma_dnan_inf checks a matrix that is located on the CPU host for NAN (not-a-number) and INF (infinity) values.
void magmablas_dgeadd_q (magma_int_t m, magma_int_t n, double alpha, const double *dA, magma_int_t ldda, double *dB, magma_int_t lddb, magma_queue_t queue)
 ZGEADD adds two matrices, dB = alpha*dA + dB.
void magmablas_dgeadd (magma_int_t m, magma_int_t n, double alpha, const double *dA, magma_int_t ldda, double *dB, magma_int_t lddb)
void magmablas_dgeadd_batched_q (magma_int_t m, magma_int_t n, double alpha, const double *const *dAarray, magma_int_t ldda, double **dBarray, magma_int_t lddb, magma_int_t batchCount, magma_queue_t queue)
 ZGEADD adds two sets of matrices, dAarray[i] = alpha*dAarray[i] + dBarray[i], for i = 0, .
void magmablas_dgeadd_batched (magma_int_t m, magma_int_t n, double alpha, const double *const *dAarray, magma_int_t ldda, double **dBarray, magma_int_t lddb, magma_int_t batchCount)
void magmablas_dlacpy_q (magma_uplo_t uplo, magma_int_t m, magma_int_t n, const double *dA, magma_int_t ldda, double *dB, magma_int_t lddb, magma_queue_t queue)
 DLACPY_STREAM copies all or part of a two-dimensional matrix dA to another matrix dB.
void magmablas_dlacpy (magma_uplo_t uplo, magma_int_t m, magma_int_t n, const double *dA, magma_int_t ldda, double *dB, magma_int_t lddb)
void magmablas_dlacpy_batched_q (magma_uplo_t uplo, magma_int_t m, magma_int_t n, const double *const *dAarray, magma_int_t ldda, double **dBarray, magma_int_t lddb, magma_int_t batchCount, magma_queue_t queue)
 Note --------

  • UPLO Parameter is disabled
  • Do we want to provide a generic function to the user with all the options?

void magmablas_dlacpy_batched (magma_uplo_t uplo, magma_int_t m, magma_int_t n, const double *const *dAarray, magma_int_t ldda, double **dBarray, magma_int_t lddb, magma_int_t batchCount)
void magmablas_dlag2s_q (magma_int_t m, magma_int_t n, const double *A, magma_int_t lda, float *SA, magma_int_t ldsa, magma_int_t *info, magma_queue_t queue)
 DLAG2S_STREAM converts a double-real matrix, A, to a single-real matrix, SA.
void magmablas_dlag2s (magma_int_t m, magma_int_t n, const double *A, magma_int_t lda, float *SA, magma_int_t ldsa, magma_int_t *info)
double magmablas_dlange (magma_norm_t norm, magma_int_t m, magma_int_t n, const double *A, magma_int_t lda, double *dwork)
 DLANGE returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real matrix A.
double magmablas_dlansy (magma_norm_t norm, magma_uplo_t uplo, magma_int_t n, const double *A, magma_int_t lda, double *dwork)
 DLANSY returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric matrix A.
void magmablas_dlascl_q (magma_type_t type, magma_int_t kl, magma_int_t ku, double cfrom, double cto, magma_int_t m, magma_int_t n, double *dA, magma_int_t ldda, magma_int_t *info, magma_queue_t queue)
 DLASCL multiplies the M by N real matrix A by the real scalar CTO/CFROM.
void magmablas_dlascl (magma_type_t type, magma_int_t kl, magma_int_t ku, double cfrom, double cto, magma_int_t m, magma_int_t n, double *dA, magma_int_t ldda, magma_int_t *info)
void magmablas_dlascl2_q (magma_type_t type, magma_int_t m, magma_int_t n, const double *dD, double *dA, magma_int_t ldda, magma_int_t *info, magma_queue_t queue)
 DLASCL2 scales the M by N real matrix A by the real diagonal matrix dD.
void magmablas_dlascl2 (magma_type_t type, magma_int_t m, magma_int_t n, const double *dD, double *dA, magma_int_t ldda, magma_int_t *info)
void magmablas_dlaset_q (magma_uplo_t uplo, magma_int_t m, magma_int_t n, double offdiag, double diag, double *dA, magma_int_t ldda, magma_queue_t queue)
 DLASET_STREAM initializes a 2-D array A to DIAG on the diagonal and OFFDIAG on the off-diagonals.
void magmablas_dlaset (magma_uplo_t uplo, magma_int_t m, magma_int_t n, double offdiag, double diag, double *dA, magma_int_t ldda)
void magmablas_dlaset_band_q (magma_uplo_t uplo, magma_int_t m, magma_int_t n, magma_int_t k, double offdiag, double diag, double *dA, magma_int_t ldda, magma_queue_t queue)
 DLASET_BAND_STREAM initializes the main diagonal of dA to DIAG, and the K-1 sub- or super-diagonals to OFFDIAG.
void magmablas_dlaset_band (magma_uplo_t uplo, magma_int_t m, magma_int_t n, magma_int_t k, double offdiag, double diag, double *dA, magma_int_t ldda)
void magmablas_dlaswp_q (magma_int_t n, double *dAT, magma_int_t lda, magma_int_t k1, magma_int_t k2, const magma_int_t *ipiv, magma_int_t inci, magma_queue_t queue)
 Purpose: ============= DLASWP performs a series of row interchanges on the matrix A.
void magmablas_dlaswp (magma_int_t n, double *dAT, magma_int_t lda, magma_int_t k1, magma_int_t k2, const magma_int_t *ipiv, magma_int_t inci)
void magmablas_dlaswpx_q (magma_int_t n, double *dA, magma_int_t ldx, magma_int_t ldy, magma_int_t k1, magma_int_t k2, const magma_int_t *ipiv, magma_int_t inci, magma_queue_t queue)
 Purpose: ============= DLASWPX performs a series of row interchanges on the matrix A.
void magmablas_dlaswpx (magma_int_t n, double *dA, magma_int_t ldx, magma_int_t ldy, magma_int_t k1, magma_int_t k2, const magma_int_t *ipiv, magma_int_t inci)
void magmablas_dlaswp2_q (magma_int_t n, double *dAT, magma_int_t lda, magma_int_t k1, magma_int_t k2, const magma_int_t *d_ipiv, magma_int_t inci, magma_queue_t queue)
 Purpose: ============= DLASWP2 performs a series of row interchanges on the matrix A.
void magmablas_dlaswp2 (magma_int_t n, double *dAT, magma_int_t lda, magma_int_t k1, magma_int_t k2, const magma_int_t *d_ipiv, magma_int_t inci)
void magmablas_dlat2s_q (magma_uplo_t uplo, magma_int_t n, const double *A, magma_int_t lda, float *SA, magma_int_t ldsa, magma_int_t *info, magma_queue_t queue)
 DLAT2S converts a double-real matrix, A, to a single-real matrix, SA.
void magmablas_dlat2s (magma_uplo_t uplo, magma_int_t n, const double *A, magma_int_t lda, float *SA, magma_int_t ldsa, magma_int_t *info)
void magmablas_dslaswp_q (magma_int_t n, double *A, magma_int_t lda, float *SA, magma_int_t m, const magma_int_t *ipiv, magma_int_t incx, magma_queue_t queue)
 Row i of A is cast to single precision in row ipiv[i] of SA (incx > 0), or row i of SA is cast to double precision in row ipiv[i] of A (incx < 0), for 0 <= i < M.
void magmablas_dslaswp (magma_int_t n, double *A, magma_int_t lda, float *SA, magma_int_t m, const magma_int_t *ipiv, magma_int_t incx)
void magmablas_dswapdblk_q (magma_int_t n, magma_int_t nb, double *dA, magma_int_t ldda, magma_int_t inca, double *dB, magma_int_t lddb, magma_int_t incb, magma_queue_t queue)
 dswapdblk swaps diagonal blocks of size nb x nb between matrices dA and dB on the GPU.
void magmablas_dswapdblk (magma_int_t n, magma_int_t nb, double *dA, magma_int_t ldda, magma_int_t inca, double *dB, magma_int_t lddb, magma_int_t incb)
void magmablas_dsymmetrize_q (magma_uplo_t uplo, magma_int_t m, double *dA, magma_int_t ldda, magma_queue_t queue)
 DSYMMETRIZE copies lower triangle to upper triangle, or vice-versa, to make dA a general representation of a symmetric matrix.
void magmablas_dsymmetrize (magma_uplo_t uplo, magma_int_t m, double *dA, magma_int_t ldda)
void magmablas_dsymmetrize_tiles_q (magma_uplo_t uplo, magma_int_t m, double *dA, magma_int_t ldda, magma_int_t ntile, magma_int_t mstride, magma_int_t nstride, magma_queue_t queue)
 DSYMMETRIZE_TILES copies lower triangle to upper triangle, or vice-versa, to make some blocks of dA into general representations of a symmetric block.
void magmablas_dsymmetrize_tiles (magma_uplo_t uplo, magma_int_t m, double *dA, magma_int_t ldda, magma_int_t ntile, magma_int_t mstride, magma_int_t nstride)
void magmablas_dtranspose_q (magma_int_t m, magma_int_t n, const double *dA, magma_int_t ldda, double *dAT, magma_int_t lddat, magma_queue_t queue)
 dtranspose_q copies and transposes a matrix dA to matrix dAT.
void magmablas_dtranspose (magma_int_t m, magma_int_t n, const double *dA, magma_int_t ldda, double *dAT, magma_int_t lddat)
void magmablas_dtranspose_inplace_q (magma_int_t n, double *dA, magma_int_t ldda, magma_queue_t queue)
 dtranspose_inplace_q transposes a square N-by-N matrix in-place.
void magmablas_dtranspose_inplace (magma_int_t n, double *dA, magma_int_t ldda)
void magmablas_slat2d_q (magma_uplo_t uplo, magma_int_t n, const float *SA, magma_int_t ldsa, double *A, magma_int_t lda, magma_int_t *info, magma_queue_t queue)
 SLAT2D_STREAM converts a single-real matrix, SA, to a double-real matrix, A.
void magmablas_slat2d (magma_uplo_t uplo, magma_int_t n, const float *SA, magma_int_t ldsa, double *A, magma_int_t lda, magma_int_t *info)

Function Documentation

magma_int_t magma_dnan_inf ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
const double *  A,
magma_int_t  lda,
magma_int_t *  cnt_nan,
magma_int_t *  cnt_inf 
)

magma_dnan_inf checks a matrix that is located on the CPU host for NAN (not-a-number) and INF (infinity) values.

NAN is created by 0/0 and similar. INF is created by x/0 and similar, where x != 0.

Parameters:
[in] uplo magma_uplo_t Specifies what part of the matrix A to check.

  • = MagmaUpper: Upper triangular part of A
  • = MagmaLower: Lower triangular part of A
  • = MagmaFull: All of A
[in] m INTEGER The number of rows of the matrix A. M >= 0.
[in] n INTEGER The number of columns of the matrix A. N >= 0.
[in] A DOUBLE_PRECISION array, dimension (LDA,N), on the CPU host. The M-by-N matrix to be printed.
[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,M).
[out] cnt_nan INTEGER* If non-NULL, on exit contains the number of NAN values in A.
[out] cnt_inf INTEGER* If non-NULL, on exit contains the number of INF values in A.
Returns:
  • >= 0: Returns number of NAN + number of INF values.
  • < 0: If it returns -i, the i-th argument had an illegal value, or another error occured, such as memory allocation failed.
magma_int_t magma_dnan_inf_gpu ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
const double *  dA,
magma_int_t  ldda,
magma_int_t *  cnt_nan,
magma_int_t *  cnt_inf 
)

magma_dnan_inf checks a matrix that is located on the CPU host for NAN (not-a-number) and INF (infinity) values.

NAN is created by 0/0 and similar. INF is created by x/0 and similar, where x != 0.

Parameters:
[in] uplo magma_uplo_t Specifies what part of the matrix A to check.

  • = MagmaUpper: Upper triangular part of A
  • = MagmaLower: Lower triangular part of A
  • = MagmaFull: All of A
[in] m INTEGER The number of rows of the matrix A. M >= 0.
[in] n INTEGER The number of columns of the matrix A. N >= 0.
[in] dA DOUBLE_PRECISION array, dimension (LDDA,N), on the GPU device. The M-by-N matrix to be printed.
[in] ldda INTEGER The leading dimension of the array A. LDDA >= max(1,M).
[out] cnt_nan INTEGER* If non-NULL, on exit contains the number of NAN values in A.
[out] cnt_inf INTEGER* If non-NULL, on exit contains the number of INF values in A.
Returns:
  • >= 0: Returns number of NAN + number of INF values.
  • < 0: If it returns -i, the i-th argument had an illegal value, or another error occured, such as memory allocation failed.
void magma_dprint ( magma_int_t  m,
magma_int_t  n,
const double *  A,
magma_int_t  lda 
)

magma_dprint prints a matrix that is located on the CPU host.

The output is intended to be Matlab compatible, to be useful in debugging.

Parameters:
[in] m INTEGER The number of rows of the matrix A. M >= 0.
[in] n INTEGER The number of columns of the matrix A. N >= 0.
[in] A DOUBLE_PRECISION array, dimension (LDA,N), on the CPU host. The M-by-N matrix to be printed.
[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,M).
void magma_dprint_gpu ( magma_int_t  m,
magma_int_t  n,
const double *  dA,
magma_int_t  ldda 
)

magma_dprint_gpu prints a matrix that is located on the GPU device.

Internally, it allocates CPU memory and copies the matrix to the CPU. The output is intended to be Matlab compatible, to be useful in debugging.

Parameters:
[in] m INTEGER The number of rows of the matrix A. M >= 0.
[in] n INTEGER The number of columns of the matrix A. N >= 0.
[in] dA DOUBLE_PRECISION array, dimension (LDDA,N), on the GPU device. The M-by-N matrix to be printed.
[in] ldda INTEGER The leading dimension of the array A. LDDA >= max(1,M).
void magmablas_dgeadd ( magma_int_t  m,
magma_int_t  n,
double  alpha,
const double *  dA,
magma_int_t  ldda,
double *  dB,
magma_int_t  lddb 
)
void magmablas_dgeadd_batched ( magma_int_t  m,
magma_int_t  n,
double  alpha,
const double *const *  dAarray,
magma_int_t  ldda,
double **  dBarray,
magma_int_t  lddb,
magma_int_t  batchCount 
)
void magmablas_dgeadd_batched_q ( magma_int_t  m,
magma_int_t  n,
double  alpha,
const double *const *  dAarray,
magma_int_t  ldda,
double **  dBarray,
magma_int_t  lddb,
magma_int_t  batchCount,
magma_queue_t  queue 
)

ZGEADD adds two sets of matrices, dAarray[i] = alpha*dAarray[i] + dBarray[i], for i = 0, .

.., batchCount-1.

Parameters:
[in] m INTEGER The number of rows of each matrix dAarray[i]. M >= 0.
[in] n INTEGER The number of columns of each matrix dAarray[i]. N >= 0.
[in] alpha DOUBLE_PRECISION The scalar alpha.
[in] dAarray array on GPU, dimension(batchCount), of pointers to arrays, with each array a DOUBLE_PRECISION array, dimension (LDDA,N) The m by n matrices dAarray[i].
[in] ldda INTEGER The leading dimension of each array dAarray[i]. LDDA >= max(1,M).
[in,out] dBarray array on GPU, dimension(batchCount), of pointers to arrays, with each array a DOUBLE_PRECISION array, dimension (LDDB,N) The m by n matrices dBarray[i].
[in] lddb INTEGER The leading dimension of each array dBarray[i]. LDDB >= max(1,M).
[in] batchCount INTEGER The number of matrices to add; length of dAarray and dBarray. batchCount >= 0.
[in] queue magma_queue_t Queue to execute in.
void magmablas_dgeadd_q ( magma_int_t  m,
magma_int_t  n,
double  alpha,
const double *  dA,
magma_int_t  ldda,
double *  dB,
magma_int_t  lddb,
magma_queue_t  queue 
)

ZGEADD adds two matrices, dB = alpha*dA + dB.

Parameters:
[in] m INTEGER The number of rows of the matrix dA. M >= 0.
[in] n INTEGER The number of columns of the matrix dA. N >= 0.
[in] alpha DOUBLE_PRECISION The scalar alpha.
[in] dA DOUBLE_PRECISION array, dimension (LDDA,N) The m by n matrix dA.
[in] ldda INTEGER The leading dimension of the array dA. LDDA >= max(1,M).
[in,out] dB DOUBLE_PRECISION array, dimension (LDDB,N) The m by n matrix dB.
[in] lddb INTEGER The leading dimension of the array dB. LDDB >= max(1,M).
[in] queue magma_queue_t Queue to execute in.
void magmablas_dlacpy ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
const double *  dA,
magma_int_t  ldda,
double *  dB,
magma_int_t  lddb 
)
void magmablas_dlacpy_batched ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
const double *const *  dAarray,
magma_int_t  ldda,
double **  dBarray,
magma_int_t  lddb,
magma_int_t  batchCount 
)
void magmablas_dlacpy_batched_q ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
const double *const *  dAarray,
magma_int_t  ldda,
double **  dBarray,
magma_int_t  lddb,
magma_int_t  batchCount,
magma_queue_t  queue 
)

Note --------

  • UPLO Parameter is disabled
  • Do we want to provide a generic function to the user with all the options?

DLACPY copies all or part of a set of two-dimensional matrices dAarray[i] to another set of matrices dBarray[i], for i = 0, ..., batchCount-1.

Parameters:
[in] uplo magma_uplo_t Specifies the part of each matrix dAarray[i] to be copied to dBarray[i].

  • = MagmaUpper: Upper triangular part
  • = MagmaLower: Lower triangular part Otherwise: All of each matrix dAarray[i]
[in] m INTEGER The number of rows of each matrix dAarray[i]. M >= 0.
[in] n INTEGER The number of columns of each matrix dAarray[i]. N >= 0.
[in] dAarray array on GPU, dimension(batchCount), of pointers to arrays, with each array a DOUBLE_PRECISION array, dimension (LDDA,N) The m by n matrices dAarray[i]. If UPLO = MagmaUpper, only the upper triangle or trapezoid is accessed; if UPLO = MagmaLower, only the lower triangle or trapezoid is accessed.
[in] ldda INTEGER The leading dimension of each array dAarray[i]. LDDA >= max(1,M).
[out] dBarray array on GPU, dimension(batchCount), of pointers to arrays, with each array a DOUBLE_PRECISION array, dimension (LDDB,N) The m by n matrices dBarray[i]. On exit, matrix dBarray[i] = matrix dAarray[i] in the locations specified by UPLO.
[in] lddb INTEGER The leading dimension of each array dBarray[i]. LDDB >= max(1,M).
[in] batchCount INTEGER The number of matrices to add; length of dAarray and dBarray. batchCount >= 0.
[in] queue magma_queue_t Queue to execute in.
void magmablas_dlacpy_q ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
const double *  dA,
magma_int_t  ldda,
double *  dB,
magma_int_t  lddb,
magma_queue_t  queue 
)

DLACPY_STREAM copies all or part of a two-dimensional matrix dA to another matrix dB.

This is the same as DLACPY, but adds queue argument.

Parameters:
[in] uplo magma_uplo_t Specifies the part of the matrix dA to be copied to dB.

  • = MagmaUpper: Upper triangular part
  • = MagmaLower: Lower triangular part Otherwise: All of the matrix dA
[in] m INTEGER The number of rows of the matrix dA. M >= 0.
[in] n INTEGER The number of columns of the matrix dA. N >= 0.
[in] dA DOUBLE_PRECISION array, dimension (LDDA,N) The m by n matrix dA. If UPLO = MagmaUpper, only the upper triangle or trapezoid is accessed; if UPLO = MagmaLower, only the lower triangle or trapezoid is accessed.
[in] ldda INTEGER The leading dimension of the array dA. LDDA >= max(1,M).
[out] dB DOUBLE_PRECISION array, dimension (LDDB,N) The m by n matrix dB. On exit, dB = dA in the locations specified by UPLO.
[in] lddb INTEGER The leading dimension of the array dB. LDDB >= max(1,M).
[in] queue magma_queue_t Queue to execute in.
void magmablas_dlag2s ( magma_int_t  m,
magma_int_t  n,
const double *  A,
magma_int_t  lda,
float *  SA,
magma_int_t  ldsa,
magma_int_t *  info 
)
void magmablas_dlag2s_q ( magma_int_t  m,
magma_int_t  n,
const double *  A,
magma_int_t  lda,
float *  SA,
magma_int_t  ldsa,
magma_int_t *  info,
magma_queue_t  queue 
)

DLAG2S_STREAM converts a double-real matrix, A, to a single-real matrix, SA.

RMAX is the overflow for the single-real arithmetic. DLAG2S checks that all the entries of A are between -RMAX and RMAX. If not, the conversion is aborted and a flag is raised.

This is the same as DLAG2S, but adds queue argument.

Parameters:
[in] m INTEGER The number of lines of the matrix A. m >= 0.
[in] n INTEGER The number of columns of the matrix A. n >= 0.
[in] A DOUBLE PRECISION array, dimension (LDA,n) On entry, the m-by-n coefficient matrix A.
[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,m).
[out] SA SINGLE PRECISION array, dimension (LDSA,n) On exit, if INFO=0, the m-by-n coefficient matrix SA; if INFO > 0, the content of SA is unspecified.
[in] ldsa INTEGER The leading dimension of the array SA. LDSA >= max(1,m).
[out] info INTEGER

  • = 0: successful exit.
  • < 0: if INFO = -i, the i-th argument had an illegal value
  • = 1: an entry of the matrix A is greater than the SINGLE PRECISION overflow threshold, in this case, the content of SA on exit is unspecified.
[in] queue magma_queue_t Queue to execute in.
double magmablas_dlange ( magma_norm_t  norm,
magma_int_t  m,
magma_int_t  n,
const double *  A,
magma_int_t  lda,
double *  dwork 
)

DLANGE returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real matrix A.

Description ----------- DLANGE returns the value

DLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm' ** not yet supported ( ( norm1(A), NORM = '1', 'O' or 'o' ** not yet supported ( ( normI(A), NORM = 'I' or 'i' ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' ** not yet supported

where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.

Parameters:
[in] norm CHARACTER*1 Specifies the value to be returned in DLANGE as described above.
[in] m INTEGER The number of rows of the matrix A. M >= 0. When M = 0, DLANGE is set to zero.
[in] n INTEGER The number of columns of the matrix A. N >= 0. When N = 0, DLANGE is set to zero.
[in] A DOUBLE PRECISION array on the GPU, dimension (LDA,N) The m by n matrix A.
[in] lda INTEGER The leading dimension of the array A. LDA >= max(M,1).
dwork (workspace) DOUBLE PRECISION array on the GPU, dimension (MAX(1,LWORK)), where LWORK >= M when NORM = 'I'; otherwise, WORK is not referenced.
double magmablas_dlansy ( magma_norm_t  norm,
magma_uplo_t  uplo,
magma_int_t  n,
const double *  A,
magma_int_t  lda,
double *  dwork 
)

DLANSY returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric matrix A.

DLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ** supported only for (PRECISION_s || PRECISION_d || PRECISION_c || __CUDA_ARCH__ >= 200) ( ( normI(A), NORM = 'I' or 'i' ** supported only for (PRECISION_s || PRECISION_d || PRECISION_c || __CUDA_ARCH__ >= 200) ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' ** not yet supported

where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.

Returns DLANSY < 0: if DLANSY = -i, the i-th argument had an illegal value.

Arguments: ----------

Parameters:
[in] norm CHARACTER*1 Specifies the value to be returned in DLANSY as described above.
[in] uplo magma_uplo_t Specifies whether the upper or lower triangular part of the symmetric matrix A is to be referenced.

  • = MagmaUpper: Upper triangular part of A is referenced
  • = MagmaLower: Lower triangular part of A is referenced
[in] n INTEGER The order of the matrix A. N >= 0. When N = 0, DLANSY is set to zero.
[in] A DOUBLE PRECISION array on the GPU, dimension (LDA,N) The symmetric matrix A. If UPLO = MagmaUpper, the leading n by n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = MagmaLower, the leading n by n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. Note that the imaginary parts of the diagonal elements need not be set and are assumed to be zero.
[in] lda INTEGER The leading dimension of the array A. LDA >= max(N,1).
dwork (workspace) DOUBLE PRECISION array on the GPU, dimension (MAX(1,LWORK)), where LWORK >= N. NOTE: this is different than LAPACK, where WORK is required only for norm1 and normI. Here max-norm also requires work.
void magmablas_dlascl ( magma_type_t  type,
magma_int_t  kl,
magma_int_t  ku,
double  cfrom,
double  cto,
magma_int_t  m,
magma_int_t  n,
double *  dA,
magma_int_t  ldda,
magma_int_t *  info 
)
void magmablas_dlascl2 ( magma_type_t  type,
magma_int_t  m,
magma_int_t  n,
const double *  dD,
double *  dA,
magma_int_t  ldda,
magma_int_t *  info 
)
void magmablas_dlascl2_q ( magma_type_t  type,
magma_int_t  m,
magma_int_t  n,
const double *  dD,
double *  dA,
magma_int_t  ldda,
magma_int_t *  info,
magma_queue_t  queue 
)

DLASCL2 scales the M by N real matrix A by the real diagonal matrix dD.

TYPE specifies that A may be full, upper triangular, lower triangular.

Parameters:
[in] type magma_type_t TYPE indices the storage type of the input matrix A. = MagmaFull: full matrix. = MagmaLower: lower triangular matrix. = MagmaUpper: upper triangular matrix. Other formats that LAPACK supports, MAGMA does not currently support.
[in] m INTEGER The number of rows of the matrix A. M >= 0.
[in] n INTEGER The number of columns of the matrix A. N >= 0.
[in] dD DOUBLE PRECISION vector, dimension (M) The diagonal matrix containing the scalar factors. Stored as a vector.
[in,out] dA DOUBLE PRECISION array, dimension (LDDA,N) The matrix to be scaled by dD. See TYPE for the storage type.
[in] ldda INTEGER The leading dimension of the array A. LDDA >= max(1,M).
[out] info INTEGER

  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value.
[in] queue magma_queue_t Queue to execute in.
void magmablas_dlascl_q ( magma_type_t  type,
magma_int_t  kl,
magma_int_t  ku,
double  cfrom,
double  cto,
magma_int_t  m,
magma_int_t  n,
double *  dA,
magma_int_t  ldda,
magma_int_t *  info,
magma_queue_t  queue 
)

DLASCL multiplies the M by N real matrix A by the real scalar CTO/CFROM.

This is done without over/underflow as long as the final result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that A may be full, upper triangular, lower triangular.

Parameters:
[in] type magma_type_t TYPE indices the storage type of the input matrix A. = MagmaFull: full matrix. = MagmaLower: lower triangular matrix. = MagmaUpper: upper triangular matrix. Other formats that LAPACK supports, MAGMA does not currently support.
[in] kl INTEGER Unused, for LAPACK compatability.
[in] ku KU is INTEGER Unused, for LAPACK compatability.
[in] cfrom DOUBLE PRECISION
[in] cto DOUBLE PRECISION
The matrix A is multiplied by CTO/CFROM. A(I,J) is computed without over/underflow if the final result CTO*A(I,J)/CFROM can be represented without over/underflow. CFROM must be nonzero. CFROM and CTO must not be NAN.
[in] m INTEGER The number of rows of the matrix A. M >= 0.
[in] n INTEGER The number of columns of the matrix A. N >= 0.
[in,out] dA DOUBLE PRECISION array, dimension (LDDA,N) The matrix to be multiplied by CTO/CFROM. See TYPE for the storage type.
[in] ldda INTEGER The leading dimension of the array A. LDDA >= max(1,M).
[out] info INTEGER

  • = 0: successful exit
  • < 0: if INFO = -i, the i-th argument had an illegal value.
[in] queue magma_queue_t Queue to execute in.
void magmablas_dlaset ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
double  offdiag,
double  diag,
double *  dA,
magma_int_t  ldda 
)
void magmablas_dlaset_band ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
magma_int_t  k,
double  offdiag,
double  diag,
double *  dA,
magma_int_t  ldda 
)
void magmablas_dlaset_band_q ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
magma_int_t  k,
double  offdiag,
double  diag,
double *  dA,
magma_int_t  ldda,
magma_queue_t  queue 
)

DLASET_BAND_STREAM initializes the main diagonal of dA to DIAG, and the K-1 sub- or super-diagonals to OFFDIAG.

This is the same as DLASET_BAND, but adds queue argument.

Parameters:
[in] uplo magma_uplo_t Specifies the part of the matrix dA to be set.

  • = MagmaUpper: Upper triangular part
  • = MagmaLower: Lower triangular part
[in] m INTEGER The number of rows of the matrix dA. M >= 0.
[in] n INTEGER The number of columns of the matrix dA. N >= 0.
[in] k INTEGER The number of diagonals to set, including the main diagonal. K >= 0. Currently, K <= 1024 due to CUDA restrictions (max. number of threads per block).
[in] offdiag DOUBLE_PRECISION Off-diagonal elements in the band are set to OFFDIAG.
[in] diag DOUBLE_PRECISION All the main diagonal elements are set to DIAG.
[in] dA DOUBLE_PRECISION array, dimension (LDDA,N) The M-by-N matrix dA. If UPLO = MagmaUpper, only the upper triangle or trapezoid is accessed; if UPLO = MagmaLower, only the lower triangle or trapezoid is accessed. On exit, A(i,j) = ALPHA, 1 <= i <= m, 1 <= j <= n where i != j, abs(i-j) < k; A(i,i) = BETA , 1 <= i <= min(m,n)
[in] ldda INTEGER The leading dimension of the array dA. LDDA >= max(1,M).
[in] queue magma_queue_t Stream to execute DLASET in.
void magmablas_dlaset_q ( magma_uplo_t  uplo,
magma_int_t  m,
magma_int_t  n,
double  offdiag,
double  diag,
double *  dA,
magma_int_t  ldda,
magma_queue_t  queue 
)

DLASET_STREAM initializes a 2-D array A to DIAG on the diagonal and OFFDIAG on the off-diagonals.

This is the same as DLASET, but adds queue argument.

Parameters:
[in] uplo magma_uplo_t Specifies the part of the matrix dA to be set.

  • = MagmaUpper: Upper triangular part
  • = MagmaLower: Lower triangular part Otherwise: All of the matrix dA is set.
[in] m INTEGER The number of rows of the matrix dA. M >= 0.
[in] n INTEGER The number of columns of the matrix dA. N >= 0.
[in] offdiag DOUBLE_PRECISION The scalar OFFDIAG. (In LAPACK this is called ALPHA.)
[in] diag DOUBLE_PRECISION The scalar DIAG. (In LAPACK this is called BETA.)
[in] dA DOUBLE_PRECISION array, dimension (LDDA,N) The M-by-N matrix dA. If UPLO = MagmaUpper, only the upper triangle or trapezoid is accessed; if UPLO = MagmaLower, only the lower triangle or trapezoid is accessed. On exit, A(i,j) = OFFDIAG, 1 <= i <= m, 1 <= j <= n, i != j; A(i,i) = DIAG, 1 <= i <= min(m,n)
[in] ldda INTEGER The leading dimension of the array dA. LDDA >= max(1,M).
[in] queue magma_queue_t Queue to execute in.
void magmablas_dlaswp ( magma_int_t  n,
double *  dAT,
magma_int_t  lda,
magma_int_t  k1,
magma_int_t  k2,
const magma_int_t *  ipiv,
magma_int_t  inci 
)
void magmablas_dlaswp2 ( magma_int_t  n,
double *  dAT,
magma_int_t  lda,
magma_int_t  k1,
magma_int_t  k2,
const magma_int_t *  d_ipiv,
magma_int_t  inci 
)
void magmablas_dlaswp2_q ( magma_int_t  n,
double *  dAT,
magma_int_t  lda,
magma_int_t  k1,
magma_int_t  k2,
const magma_int_t *  d_ipiv,
magma_int_t  inci,
magma_queue_t  queue 
)

Purpose: ============= DLASWP2 performs a series of row interchanges on the matrix A.

One row interchange is initiated for each of rows K1 through K2 of A.

Unlike LAPACK, here A is stored row-wise (hence dAT). ** Otherwise, this is identical to LAPACK's interface.

Here, d_ipiv is passed in GPU memory.

Arguments: ==========

Parameters:
[in] n INTEGER The number of columns of the matrix A.
[in,out] dAT DOUBLE PRECISION array on GPU, stored row-wise, dimension (LDA,*) On entry, the matrix of column dimension N to which the row interchanges will be applied. On exit, the permuted matrix.
[in] lda INTEGER The leading dimension of the array A. (I.e., stride between elements in a column.)
[in] k1 INTEGER The first element of IPIV for which a row interchange will be done. (One based index.)
[in] k2 INTEGER The last element of IPIV for which a row interchange will be done. (One based index.)
[in] d_ipiv INTEGER array, on GPU, dimension (K2*abs(INCI)) The vector of pivot indices. Only the elements in positions K1 through K2 of IPIV are accessed. IPIV(K) = L implies rows K and L are to be interchanged.
[in] inci INTEGER The increment between successive values of IPIV. Currently, IPIV > 0. TODO: If IPIV is negative, the pivots are applied in reverse order.
[in] queue magma_queue_t Queue to execute in.
void magmablas_dlaswp_q ( magma_int_t  n,
double *  dAT,
magma_int_t  lda,
magma_int_t  k1,
magma_int_t  k2,
const magma_int_t *  ipiv,
magma_int_t  inci,
magma_queue_t  queue 
)

Purpose: ============= DLASWP performs a series of row interchanges on the matrix A.

One row interchange is initiated for each of rows K1 through K2 of A.

Unlike LAPACK, here A is stored row-wise (hence dAT). ** Otherwise, this is identical to LAPACK's interface.

Arguments: ==========

Parameters:
[in] n INTEGER The number of columns of the matrix A.
[in,out] dAT DOUBLE PRECISION array on GPU, stored row-wise, dimension (LDA,N) On entry, the matrix of column dimension N to which the row interchanges will be applied. On exit, the permuted matrix.
[in] lda INTEGER The leading dimension of the array A. lda >= n.
[in] k1 INTEGER The first element of IPIV for which a row interchange will be done. (Fortran one-based index: 1 <= k1 <= n.)
[in] k2 INTEGER The last element of IPIV for which a row interchange will be done. (Fortran one-based index: 1 <= k2 <= n.)
[in] ipiv INTEGER array, on CPU, dimension (K2*abs(INCI)) The vector of pivot indices. Only the elements in positions K1 through K2 of IPIV are accessed. IPIV(K) = L implies rows K and L are to be interchanged.
[in] inci INTEGER The increment between successive values of IPIV. Currently, IPIV > 0. TODO: If IPIV is negative, the pivots are applied in reverse order.
[in] queue magma_queue_t Queue to execute in.
void magmablas_dlaswpx ( magma_int_t  n,
double *  dA,
magma_int_t  ldx,
magma_int_t  ldy,
magma_int_t  k1,
magma_int_t  k2,
const magma_int_t *  ipiv,
magma_int_t  inci 
)
void magmablas_dlaswpx_q ( magma_int_t  n,
double *  dA,
magma_int_t  ldx,
magma_int_t  ldy,
magma_int_t  k1,
magma_int_t  k2,
const magma_int_t *  ipiv,
magma_int_t  inci,
magma_queue_t  queue 
)

Purpose: ============= DLASWPX performs a series of row interchanges on the matrix A.

One row interchange is initiated for each of rows K1 through K2 of A.

Unlike LAPACK, here A is stored either row-wise or column-wise, depending on ldx and ldy. ** Otherwise, this is identical to LAPACK's interface.

Arguments: ==========

Parameters:
[in] n INTEGER The number of columns of the matrix A.
[in,out] dA DOUBLE PRECISION array on GPU, dimension (*,*) On entry, the matrix of column dimension N to which the row interchanges will be applied. On exit, the permuted matrix.
[in] ldx INTEGER Stride between elements in same column.
[in] ldy INTEGER Stride between elements in same row. For A stored row-wise, set ldx=lda and ldy=1. For A stored column-wise, set ldx=1 and ldy=lda.
[in] k1 INTEGER The first element of IPIV for which a row interchange will be done. (One based index.)
[in] k2 INTEGER The last element of IPIV for which a row interchange will be done. (One based index.)
[in] ipiv INTEGER array, on CPU, dimension (K2*abs(INCI)) The vector of pivot indices. Only the elements in positions K1 through K2 of IPIV are accessed. IPIV(K) = L implies rows K and L are to be interchanged.
[in] inci INTEGER The increment between successive values of IPIV. Currently, IPIV > 0. TODO: If IPIV is negative, the pivots are applied in reverse order.
[in] queue magma_queue_t Queue to execute in.
void magmablas_dlat2s ( magma_uplo_t  uplo,
magma_int_t  n,
const double *  A,
magma_int_t  lda,
float *  SA,
magma_int_t  ldsa,
magma_int_t *  info 
)
void magmablas_dlat2s_q ( magma_uplo_t  uplo,
magma_int_t  n,
const double *  A,
magma_int_t  lda,
float *  SA,
magma_int_t  ldsa,
magma_int_t *  info,
magma_queue_t  queue 
)

DLAT2S converts a double-real matrix, A, to a single-real matrix, SA.

RMAX is the overflow for the single-real arithmetic. DLAT2S checks that all the entries of A are between -RMAX and RMAX. If not, the conversion is aborted and a flag is raised.

Parameters:
[in] uplo magma_uplo_t Specifies the part of the matrix A to be converted.

  • = MagmaUpper: Upper triangular part
  • = MagmaLower: Lower triangular part
[in] n INTEGER The number of columns of the matrix A. n >= 0.
[in] A DOUBLE PRECISION array, dimension (LDA,n) On entry, the n-by-n coefficient matrix A.
[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,n).
[out] SA SINGLE PRECISION array, dimension (LDSA,n) On exit, if INFO=0, the n-by-n coefficient matrix SA; if INFO > 0, the content of SA is unspecified.
[in] ldsa INTEGER The leading dimension of the array SA. LDSA >= max(1,n).
[out] info INTEGER

  • = 0: successful exit.
  • < 0: if INFO = -i, the i-th argument had an illegal value
  • = 1: an entry of the matrix A is greater than the SINGLE PRECISION overflow threshold, in this case, the content of SA on exit is unspecified.
[in] queue magma_queue_t Queue to execute in.
void magmablas_dslaswp ( magma_int_t  n,
double *  A,
magma_int_t  lda,
float *  SA,
magma_int_t  m,
const magma_int_t *  ipiv,
magma_int_t  incx 
)
void magmablas_dslaswp_q ( magma_int_t  n,
double *  A,
magma_int_t  lda,
float *  SA,
magma_int_t  m,
const magma_int_t *  ipiv,
magma_int_t  incx,
magma_queue_t  queue 
)

Row i of A is cast to single precision in row ipiv[i] of SA (incx > 0), or row i of SA is cast to double precision in row ipiv[i] of A (incx < 0), for 0 <= i < M.

Parameters:
[in] n INTEGER. On entry, N specifies the number of columns of the matrix A.
[in,out] A DOUBLE PRECISION array on the GPU, dimension (LDA,N) On entry, the M-by-N matrix to which the row interchanges will be applied. TODO update docs
[in] lda INTEGER. LDA specifies the leading dimension of A.
[in,out] SA REAL array on the GPU, dimension (LDA,N) On exit, the single precision, permuted matrix. TODO update docs
[in] m The number of rows to be interchanged.
[in] ipiv INTEGER array on the GPU, dimension (M) The vector of pivot indices. Row i of A is cast to single precision in row ipiv[i] of SA, for 0 <= i < m.
[in] incx INTEGER If INCX is negative, the pivots are applied in reverse order, otherwise in straight-forward order.
[in] queue magma_queue_t Queue to execute in.
void magmablas_dswapdblk ( magma_int_t  n,
magma_int_t  nb,
double *  dA,
magma_int_t  ldda,
magma_int_t  inca,
double *  dB,
magma_int_t  lddb,
magma_int_t  incb 
)
void magmablas_dswapdblk_q ( magma_int_t  n,
magma_int_t  nb,
double *  dA,
magma_int_t  ldda,
magma_int_t  inca,
double *  dB,
magma_int_t  lddb,
magma_int_t  incb,
magma_queue_t  queue 
)

dswapdblk swaps diagonal blocks of size nb x nb between matrices dA and dB on the GPU.

It swaps nblocks = n/nb blocks. For i = 1 .. nblocks, submatrices dA( i*nb*inca, i*nb ) and dB( i*nb*incb, i*nb ) are swapped.

Parameters:
[in] n INTEGER The number of columns of the matrices dA and dB. N >= 0.
[in] nb INTEGER The size of diagonal blocks. NB > 0 and NB <= maximum threads per CUDA block (512 or 1024).
[in,out] dA DOUBLE_PRECISION array, dimension (LDDA,N) The matrix dA.
[in] ldda INTEGER The leading dimension of the array dA. LDDA >= (nblocks - 1)*nb*inca + nb.
[in] inca INTEGER The row increment between diagonal blocks of dA. inca >= 0. For example, inca = 1 means blocks are stored on the diagonal at dA(i*nb, i*nb), inca = 0 means blocks are stored side-by-side at dA(0, i*nb).
[in,out] dB DOUBLE_PRECISION array, dimension (LDDB,N) The matrix dB.
[in] lddb INTEGER The leading dimension of the array db. LDDB >= (nblocks - 1)*nb*incb + nb.
[in] incb INTEGER The row increment between diagonal blocks of dB. incb >= 0. See inca.
[in] queue magma_queue_t Queue to execute in.
void magmablas_dsymmetrize ( magma_uplo_t  uplo,
magma_int_t  m,
double *  dA,
magma_int_t  ldda 
)
void magmablas_dsymmetrize_q ( magma_uplo_t  uplo,
magma_int_t  m,
double *  dA,
magma_int_t  ldda,
magma_queue_t  queue 
)

DSYMMETRIZE copies lower triangle to upper triangle, or vice-versa, to make dA a general representation of a symmetric matrix.

Parameters:
[in] uplo magma_uplo_t Specifies the part of the matrix dA that is valid on input.

  • = MagmaUpper: Upper triangular part
  • = MagmaLower: Lower triangular part
[in] m INTEGER The number of rows of the matrix dA. M >= 0.
[in,out] dA DOUBLE_PRECISION array, dimension (LDDA,N) The m by m matrix dA.
[in] ldda INTEGER The leading dimension of the array dA. LDDA >= max(1,M).
[in] queue magma_queue_t Queue to execute in.
void magmablas_dsymmetrize_tiles ( magma_uplo_t  uplo,
magma_int_t  m,
double *  dA,
magma_int_t  ldda,
magma_int_t  ntile,
magma_int_t  mstride,
magma_int_t  nstride 
)
void magmablas_dsymmetrize_tiles_q ( magma_uplo_t  uplo,
magma_int_t  m,
double *  dA,
magma_int_t  ldda,
magma_int_t  ntile,
magma_int_t  mstride,
magma_int_t  nstride,
magma_queue_t  queue 
)

DSYMMETRIZE_TILES copies lower triangle to upper triangle, or vice-versa, to make some blocks of dA into general representations of a symmetric block.

This processes NTILE blocks, typically the diagonal blocks. Each block is offset by mstride rows and nstride columns from the previous block.

Parameters:
[in] uplo magma_uplo_t Specifies the part of the matrix dA that is valid on input.

  • = MagmaUpper: Upper triangular part
  • = MagmaLower: Lower triangular part
[in] m INTEGER The number of rows & columns of each square block of dA. M >= 0.
[in,out] dA DOUBLE_PRECISION array, dimension (LDDA,N) The matrix dA. N = m + nstride*(ntile-1).
[in] ldda INTEGER The leading dimension of the array dA. LDDA >= max(1, m + mstride*(ntile-1)).
[in] ntile INTEGER Number of blocks to symmetrize. ntile >= 0.
[in] mstride INTEGER Row offset from start of one block to start of next block. mstride >= 0. Either (mstride >= m) or (nstride >= m), to prevent m-by-m tiles from overlapping.
[in] nstride INTEGER Column offset from start of one block to start of next block. nstride >= 0.
[in] queue magma_queue_t Queue to execute in.
void magmablas_dtranspose ( magma_int_t  m,
magma_int_t  n,
const double *  dA,
magma_int_t  ldda,
double *  dAT,
magma_int_t  lddat 
)
void magmablas_dtranspose_inplace ( magma_int_t  n,
double *  dA,
magma_int_t  ldda 
)
void magmablas_dtranspose_inplace_q ( magma_int_t  n,
double *  dA,
magma_int_t  ldda,
magma_queue_t  queue 
)

dtranspose_inplace_q transposes a square N-by-N matrix in-place.

Same as dtranspose_inplace, but adds queue argument.

Parameters:
[in] n INTEGER The number of rows & columns of the matrix dA. N >= 0.
[in] dA DOUBLE_PRECISION array, dimension (LDDA,N) The N-by-N matrix dA. On exit, dA(j,i) = dA_original(i,j), for 0 <= i,j < N.
[in] ldda INTEGER The leading dimension of the array dA. LDDA >= N.
[in] queue magma_queue_t Queue to execute in.
void magmablas_dtranspose_q ( magma_int_t  m,
magma_int_t  n,
const double *  dA,
magma_int_t  ldda,
double *  dAT,
magma_int_t  lddat,
magma_queue_t  queue 
)

dtranspose_q copies and transposes a matrix dA to matrix dAT.

Same as dtranspose, but adds queue argument.

Parameters:
[in] m INTEGER The number of rows of the matrix dA. M >= 0.
[in] n INTEGER The number of columns of the matrix dA. N >= 0.
[in] dA DOUBLE_PRECISION array, dimension (LDDA,N) The M-by-N matrix dA.
[in] ldda INTEGER The leading dimension of the array dA. LDDA >= M.
[in] dAT DOUBLE_PRECISION array, dimension (LDDA,N) The N-by-M matrix dAT.
[in] lddat INTEGER The leading dimension of the array dAT. LDDAT >= N.
[in] queue magma_queue_t Queue to execute in.
void magmablas_slat2d ( magma_uplo_t  uplo,
magma_int_t  n,
const float *  SA,
magma_int_t  ldsa,
double *  A,
magma_int_t  lda,
magma_int_t *  info 
)
void magmablas_slat2d_q ( magma_uplo_t  uplo,
magma_int_t  n,
const float *  SA,
magma_int_t  ldsa,
double *  A,
magma_int_t  lda,
magma_int_t *  info,
magma_queue_t  queue 
)

SLAT2D_STREAM converts a single-real matrix, SA, to a double-real matrix, A.

Note that while it is possible to overflow while converting from double to single, it is not possible to overflow when converting from single to double.

Parameters:
[in] uplo magma_uplo_t Specifies the part of the matrix A to be converted.

  • = MagmaUpper: Upper triangular part
  • = MagmaLower: Lower triangular part
[in] n INTEGER The number of columns of the matrix A. n >= 0.
[in] A DOUBLE PRECISION array, dimension (LDA,n) On entry, the n-by-n coefficient matrix A.
[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,n).
[out] SA SINGLE PRECISION array, dimension (LDSA,n) On exit, if INFO=0, the n-by-n coefficient matrix SA; if INFO > 0, the content of SA is unspecified.
[in] ldsa INTEGER The leading dimension of the array SA. LDSA >= max(1,n).
[out] info INTEGER

  • = 0: successful exit.
  • < 0: if INFO = -i, the i-th argument had an illegal value
[in] queue magma_queue_t Queue to execute in.

Generated on 17 Sep 2014 for MAGMA by  doxygen 1.6.1