double-complex precision

Functions

magma_int_t magma_zjacobisetup_matrix (magma_z_sparse_matrix A, magma_z_sparse_matrix *M, magma_z_vector *d)
 Prepares the Matrix M for the Jacobi Iteration according to x^(k+1) = D^(-1) * b - D^(-1) * (L+U) * x^k x^(k+1) = c - M * x^k.
magma_int_t magma_zjacobisetup_diagscal (magma_z_sparse_matrix A, magma_z_vector *d)
 It returns a vector d containing the inverse diagonal elements.
magma_int_t magma_zjacobisetup_vector (magma_z_vector b, magma_z_vector d, magma_z_vector *c)
 Prepares the Jacobi Iteration according to x^(k+1) = D^(-1) * b - D^(-1) * (L+U) * x^k x^(k+1) = c - M * x^k.
magma_int_t magma_zjacobisetup (magma_z_sparse_matrix A, magma_z_vector b, magma_z_sparse_matrix *M, magma_z_vector *c)
 Prepares the Jacobi Iteration according to x^(k+1) = D^(-1) * b - D^(-1) * (L+U) * x^k x^(k+1) = c - M * x^k.
magma_int_t magma_zjacobiiter (magma_z_sparse_matrix M, magma_z_vector c, magma_z_vector *x, magma_z_solver_par *solver_par)
 Iterates the solution approximation according to x^(k+1) = D^(-1) * b - D^(-1) * (L+U) * x^k x^(k+1) = c - M * x^k.
magma_int_t magma_zjacobiiter_precond (magma_z_sparse_matrix M, magma_z_vector *x, magma_z_solver_par *solver_par, magma_z_preconditioner *precond)
 Iterates the solution approximation according to x^(k+1) = D^(-1) * b - D^(-1) * (L+U) * x^k x^(k+1) = c - M * x^k.
magma_int_t magma_sparse_matrix_dlag2s (magma_d_sparse_matrix A, magma_s_sparse_matrix *B)
 convertes magma_d_sparse_matrix from Z to C
magma_int_t magma_z_spmv (magmaDoubleComplex alpha, magma_z_sparse_matrix A, magma_z_vector x, magmaDoubleComplex beta, magma_z_vector y)
 For a given input matrix A and vectors x, y and scalars alpha, beta the wrapper determines the suitable SpMV computing y = alpha * A * x + beta * y.
magma_int_t magma_sparse_matrix_zlag2c (magma_z_sparse_matrix A, magma_c_sparse_matrix *B)
 convertes magma_z_sparse_matrix from Z to C
void magma_zcompactActive (magma_int_t m, magma_int_t n, magmaDoubleComplex *dA, magma_int_t ldda, magma_index_t *active)
 ZCOMPACTACTIVE takes a set of n vectors of size m (in dA) and an array of 1s and 0sindicating which vectors to compact (for 1s) and which to disregard (for 0s).
magma_int_t magma_zgeelltmv (magma_trans_t transA, magma_int_t m, magma_int_t n, magma_int_t nnz_per_row, magmaDoubleComplex alpha, magmaDoubleComplex *d_val, magma_index_t *d_colind, magmaDoubleComplex *d_x, magmaDoubleComplex beta, magmaDoubleComplex *d_y)
 This routine computes y = alpha * A^t * x + beta * y on the GPU.
magma_int_t magma_zjacobi_diagscal (int num_rows, magmaDoubleComplex *b, magmaDoubleComplex *d, magmaDoubleComplex *c)
 Prepares the Jacobi Iteration according to x^(k+1) = D^(-1) * b - D^(-1) * (L+U) * x^k x^(k+1) = c - M * x^k.
magma_int_t magma_zgemvmdot (int n, int k, magmaDoubleComplex *v, magmaDoubleComplex *r, magmaDoubleComplex *d1, magmaDoubleComplex *d2, magmaDoubleComplex *skp)
 This is an extension of the merged dot product above by chunking the set of vectors v_i such that the data always fits into cache.

Function Documentation

magma_int_t magma_sparse_matrix_dlag2s ( magma_d_sparse_matrix  A,
magma_s_sparse_matrix *  B 
)

convertes magma_d_sparse_matrix from Z to C

Parameters:
A magma_d_sparse_matrix input matrix descriptor
B magma_s_sparse_matrix* output matrix descriptor
magma_int_t magma_sparse_matrix_zlag2c ( magma_z_sparse_matrix  A,
magma_c_sparse_matrix *  B 
)

convertes magma_z_sparse_matrix from Z to C

Parameters:
A magma_z_sparse_matrix input matrix descriptor
B magma_c_sparse_matrix* output matrix descriptor
magma_int_t magma_z_spmv ( magmaDoubleComplex  alpha,
magma_z_sparse_matrix  A,
magma_z_vector  x,
magmaDoubleComplex  beta,
magma_z_vector  y 
)

For a given input matrix A and vectors x, y and scalars alpha, beta the wrapper determines the suitable SpMV computing y = alpha * A * x + beta * y.

Parameters:
alpha magmaDoubleComplex scalar alpha
A magma_z_sparse_matrix sparse matrix A
x magma_z_vector input vector x
beta magmaDoubleComplex scalar beta
y magma_z_vector output vector y
void magma_zcompactActive ( magma_int_t  m,
magma_int_t  n,
magmaDoubleComplex *  dA,
magma_int_t  ldda,
magma_index_t *  active 
)

ZCOMPACTACTIVE takes a set of n vectors of size m (in dA) and an array of 1s and 0sindicating which vectors to compact (for 1s) and which to disregard (for 0s).

Parameters:
[in] m INTEGER The number of rows of the matrix dA. M >= 0.
[in] n INTEGER The number of columns of the matrix dA. N >= 0.
[in,out] dA COMPLEX DOUBLE PRECISION array, dimension (LDDA,N) The m by n matrix dA.
[in] ldda INTEGER The leading dimension of the array dA. LDDA >= max(1,M).
[in] active INTEGER array, dimension N A mask of 1s and 0s showing if a vector remains or has been removed
magma_int_t magma_zgeelltmv ( magma_trans_t  transA,
magma_int_t  m,
magma_int_t  n,
magma_int_t  nnz_per_row,
magmaDoubleComplex  alpha,
magmaDoubleComplex *  d_val,
magma_index_t *  d_colind,
magmaDoubleComplex *  d_x,
magmaDoubleComplex  beta,
magmaDoubleComplex *  d_y 
)

This routine computes y = alpha * A^t * x + beta * y on the GPU.

Input format is ELL.

Parameters:
transA magma_trans_t transposition parameter for A
m magma_int_t number of rows in A
n magma_int_t number of columns in A
nnz_per_row magma_int_t number of elements in the longest row
alpha magmaDoubleComplex scalar multiplier
d_val magmaDoubleComplex* array containing values of A in ELL
d_colind magma_int_t* columnindices of A in ELL
d_x magmaDoubleComplex* input vector x
beta magmaDoubleComplex scalar multiplier
d_y magmaDoubleComplex* input/output vector y
magma_int_t magma_zgemvmdot ( int  n,
int  k,
magmaDoubleComplex *  v,
magmaDoubleComplex *  r,
magmaDoubleComplex *  d1,
magmaDoubleComplex *  d2,
magmaDoubleComplex *  skp 
)

This is an extension of the merged dot product above by chunking the set of vectors v_i such that the data always fits into cache.

It is equivalent to a matrix vecor product Vr where V contains few rows and many columns. The computation is the same:

skp = ( <v_0,r>, <v_1,r>, .. )

Returns the vector skp.

Parameters:
n int length of v_i and r
k int # vectors v_i
v magmaDoubleComplex* v = (v_0 .. v_i.. v_k)
r magmaDoubleComplex* r
d1 magmaDoubleComplex* workspace
d2 magmaDoubleComplex* workspace
skp magmaDoubleComplex* vector[k] of scalar products (<v_i,r>...)
magma_int_t magma_zjacobi_diagscal ( int  num_rows,
magmaDoubleComplex *  b,
magmaDoubleComplex *  d,
magmaDoubleComplex *  c 
)

Prepares the Jacobi Iteration according to x^(k+1) = D^(-1) * b - D^(-1) * (L+U) * x^k x^(k+1) = c - M * x^k.

Returns the vector c. It calls a GPU kernel

Parameters:
num_rows magma_int_t number of rows
b magma_z_vector RHS b
d magma_z_vector vector with diagonal entries
c magma_z_vector* c = D^(-1) * b
magma_int_t magma_zjacobiiter ( magma_z_sparse_matrix  M,
magma_z_vector  c,
magma_z_vector *  x,
magma_z_solver_par *  solver_par 
)

Iterates the solution approximation according to x^(k+1) = D^(-1) * b - D^(-1) * (L+U) * x^k x^(k+1) = c - M * x^k.

Parameters:
M magma_z_sparse_matrix input matrix M = D^(-1) * (L+U)
c magma_z_vector c = D^(-1) * b
x magma_z_vector* iteration vector x
solver_par magma_z_solver_par* solver parameters
magma_int_t magma_zjacobiiter_precond ( magma_z_sparse_matrix  M,
magma_z_vector *  x,
magma_z_solver_par *  solver_par,
magma_z_preconditioner *  precond 
)

Iterates the solution approximation according to x^(k+1) = D^(-1) * b - D^(-1) * (L+U) * x^k x^(k+1) = c - M * x^k.

Parameters:
M magma_z_sparse_matrix input matrix M = D^(-1) * (L+U)
c magma_z_vector c = D^(-1) * b
x magma_z_vector* iteration vector x
solver_par magma_z_solver_par* solver parameters
solver_par magma_z_precond_par* precond parameters
magma_int_t magma_zjacobisetup ( magma_z_sparse_matrix  A,
magma_z_vector  b,
magma_z_sparse_matrix *  M,
magma_z_vector *  c 
)

Prepares the Jacobi Iteration according to x^(k+1) = D^(-1) * b - D^(-1) * (L+U) * x^k x^(k+1) = c - M * x^k.

Parameters:
A magma_z_sparse_matrix input matrix A
b magma_z_vector RHS b
M magma_z_sparse_matrix* M = D^(-1) * (L+U)
c magma_z_vector* c = D^(-1) * b
magma_int_t magma_zjacobisetup_diagscal ( magma_z_sparse_matrix  A,
magma_z_vector *  d 
)

It returns a vector d containing the inverse diagonal elements.

Parameters:
A magma_z_sparse_matrix input matrix A
d magma_z_vector* vector with diagonal elements
magma_int_t magma_zjacobisetup_matrix ( magma_z_sparse_matrix  A,
magma_z_sparse_matrix *  M,
magma_z_vector *  d 
)

Prepares the Matrix M for the Jacobi Iteration according to x^(k+1) = D^(-1) * b - D^(-1) * (L+U) * x^k x^(k+1) = c - M * x^k.

It returns the preconditioner Matrix M and a vector d containing the diagonal elements.

Parameters:
A magma_z_sparse_matrix input matrix A
M magma_z_sparse_matrix* M = D^(-1) * (L+U)
d magma_z_vector* vector with diagonal elements of A
magma_int_t magma_zjacobisetup_vector ( magma_z_vector  b,
magma_z_vector  d,
magma_z_vector *  c 
)

Prepares the Jacobi Iteration according to x^(k+1) = D^(-1) * b - D^(-1) * (L+U) * x^k x^(k+1) = c - M * x^k.

Returns the vector c

Parameters:
b magma_z_vector RHS b
d magma_z_vector vector with diagonal entries
c magma_z_vector* c = D^(-1) * b

Generated on 17 Sep 2014 for MAGMA by  doxygen 1.6.1