Functions | |
magma_int_t | magma_zjacobisetup_matrix (magma_z_sparse_matrix A, magma_z_sparse_matrix *M, magma_z_vector *d) |
Prepares the Matrix M for the Jacobi Iteration according to x^(k+1) = D^(-1) * b - D^(-1) * (L+U) * x^k x^(k+1) = c - M * x^k. | |
magma_int_t | magma_zjacobisetup_diagscal (magma_z_sparse_matrix A, magma_z_vector *d) |
It returns a vector d containing the inverse diagonal elements. | |
magma_int_t | magma_zjacobisetup_vector (magma_z_vector b, magma_z_vector d, magma_z_vector *c) |
Prepares the Jacobi Iteration according to x^(k+1) = D^(-1) * b - D^(-1) * (L+U) * x^k x^(k+1) = c - M * x^k. | |
magma_int_t | magma_zjacobisetup (magma_z_sparse_matrix A, magma_z_vector b, magma_z_sparse_matrix *M, magma_z_vector *c) |
Prepares the Jacobi Iteration according to x^(k+1) = D^(-1) * b - D^(-1) * (L+U) * x^k x^(k+1) = c - M * x^k. | |
magma_int_t | magma_zjacobiiter (magma_z_sparse_matrix M, magma_z_vector c, magma_z_vector *x, magma_z_solver_par *solver_par) |
Iterates the solution approximation according to x^(k+1) = D^(-1) * b - D^(-1) * (L+U) * x^k x^(k+1) = c - M * x^k. | |
magma_int_t | magma_zjacobiiter_precond (magma_z_sparse_matrix M, magma_z_vector *x, magma_z_solver_par *solver_par, magma_z_preconditioner *precond) |
Iterates the solution approximation according to x^(k+1) = D^(-1) * b - D^(-1) * (L+U) * x^k x^(k+1) = c - M * x^k. | |
magma_int_t | magma_sparse_matrix_dlag2s (magma_d_sparse_matrix A, magma_s_sparse_matrix *B) |
convertes magma_d_sparse_matrix from Z to C | |
magma_int_t | magma_z_spmv (magmaDoubleComplex alpha, magma_z_sparse_matrix A, magma_z_vector x, magmaDoubleComplex beta, magma_z_vector y) |
For a given input matrix A and vectors x, y and scalars alpha, beta the wrapper determines the suitable SpMV computing y = alpha * A * x + beta * y. | |
magma_int_t | magma_sparse_matrix_zlag2c (magma_z_sparse_matrix A, magma_c_sparse_matrix *B) |
convertes magma_z_sparse_matrix from Z to C | |
void | magma_zcompactActive (magma_int_t m, magma_int_t n, magmaDoubleComplex *dA, magma_int_t ldda, magma_index_t *active) |
ZCOMPACTACTIVE takes a set of n vectors of size m (in dA) and an array of 1s and 0sindicating which vectors to compact (for 1s) and which to disregard (for 0s). | |
magma_int_t | magma_zgeelltmv (magma_trans_t transA, magma_int_t m, magma_int_t n, magma_int_t nnz_per_row, magmaDoubleComplex alpha, magmaDoubleComplex *d_val, magma_index_t *d_colind, magmaDoubleComplex *d_x, magmaDoubleComplex beta, magmaDoubleComplex *d_y) |
This routine computes y = alpha * A^t * x + beta * y on the GPU. | |
magma_int_t | magma_zjacobi_diagscal (int num_rows, magmaDoubleComplex *b, magmaDoubleComplex *d, magmaDoubleComplex *c) |
Prepares the Jacobi Iteration according to x^(k+1) = D^(-1) * b - D^(-1) * (L+U) * x^k x^(k+1) = c - M * x^k. | |
magma_int_t | magma_zgemvmdot (int n, int k, magmaDoubleComplex *v, magmaDoubleComplex *r, magmaDoubleComplex *d1, magmaDoubleComplex *d2, magmaDoubleComplex *skp) |
This is an extension of the merged dot product above by chunking the set of vectors v_i such that the data always fits into cache. |
magma_int_t magma_sparse_matrix_dlag2s | ( | magma_d_sparse_matrix | A, | |
magma_s_sparse_matrix * | B | |||
) |
convertes magma_d_sparse_matrix from Z to C
A | magma_d_sparse_matrix input matrix descriptor | |
B | magma_s_sparse_matrix* output matrix descriptor |
magma_int_t magma_sparse_matrix_zlag2c | ( | magma_z_sparse_matrix | A, | |
magma_c_sparse_matrix * | B | |||
) |
convertes magma_z_sparse_matrix from Z to C
A | magma_z_sparse_matrix input matrix descriptor | |
B | magma_c_sparse_matrix* output matrix descriptor |
magma_int_t magma_z_spmv | ( | magmaDoubleComplex | alpha, | |
magma_z_sparse_matrix | A, | |||
magma_z_vector | x, | |||
magmaDoubleComplex | beta, | |||
magma_z_vector | y | |||
) |
For a given input matrix A and vectors x, y and scalars alpha, beta the wrapper determines the suitable SpMV computing y = alpha * A * x + beta * y.
alpha | magmaDoubleComplex scalar alpha | |
A | magma_z_sparse_matrix sparse matrix A | |
x | magma_z_vector input vector x | |
beta | magmaDoubleComplex scalar beta | |
y | magma_z_vector output vector y |
void magma_zcompactActive | ( | magma_int_t | m, | |
magma_int_t | n, | |||
magmaDoubleComplex * | dA, | |||
magma_int_t | ldda, | |||
magma_index_t * | active | |||
) |
ZCOMPACTACTIVE takes a set of n vectors of size m (in dA) and an array of 1s and 0sindicating which vectors to compact (for 1s) and which to disregard (for 0s).
[in] | m | INTEGER The number of rows of the matrix dA. M >= 0. |
[in] | n | INTEGER The number of columns of the matrix dA. N >= 0. |
[in,out] | dA | COMPLEX DOUBLE PRECISION array, dimension (LDDA,N) The m by n matrix dA. |
[in] | ldda | INTEGER The leading dimension of the array dA. LDDA >= max(1,M). |
[in] | active | INTEGER array, dimension N A mask of 1s and 0s showing if a vector remains or has been removed |
magma_int_t magma_zgeelltmv | ( | magma_trans_t | transA, | |
magma_int_t | m, | |||
magma_int_t | n, | |||
magma_int_t | nnz_per_row, | |||
magmaDoubleComplex | alpha, | |||
magmaDoubleComplex * | d_val, | |||
magma_index_t * | d_colind, | |||
magmaDoubleComplex * | d_x, | |||
magmaDoubleComplex | beta, | |||
magmaDoubleComplex * | d_y | |||
) |
This routine computes y = alpha * A^t * x + beta * y on the GPU.
Input format is ELL.
transA | magma_trans_t transposition parameter for A | |
m | magma_int_t number of rows in A | |
n | magma_int_t number of columns in A | |
nnz_per_row | magma_int_t number of elements in the longest row | |
alpha | magmaDoubleComplex scalar multiplier | |
d_val | magmaDoubleComplex* array containing values of A in ELL | |
d_colind | magma_int_t* columnindices of A in ELL | |
d_x | magmaDoubleComplex* input vector x | |
beta | magmaDoubleComplex scalar multiplier | |
d_y | magmaDoubleComplex* input/output vector y |
magma_int_t magma_zgemvmdot | ( | int | n, | |
int | k, | |||
magmaDoubleComplex * | v, | |||
magmaDoubleComplex * | r, | |||
magmaDoubleComplex * | d1, | |||
magmaDoubleComplex * | d2, | |||
magmaDoubleComplex * | skp | |||
) |
This is an extension of the merged dot product above by chunking the set of vectors v_i such that the data always fits into cache.
It is equivalent to a matrix vecor product Vr where V contains few rows and many columns. The computation is the same:
skp = ( <v_0,r>, <v_1,r>, .. )
Returns the vector skp.
n | int length of v_i and r | |
k | int # vectors v_i | |
v | magmaDoubleComplex* v = (v_0 .. v_i.. v_k) | |
r | magmaDoubleComplex* r | |
d1 | magmaDoubleComplex* workspace | |
d2 | magmaDoubleComplex* workspace | |
skp | magmaDoubleComplex* vector[k] of scalar products (<v_i,r>...) |
magma_int_t magma_zjacobi_diagscal | ( | int | num_rows, | |
magmaDoubleComplex * | b, | |||
magmaDoubleComplex * | d, | |||
magmaDoubleComplex * | c | |||
) |
Prepares the Jacobi Iteration according to x^(k+1) = D^(-1) * b - D^(-1) * (L+U) * x^k x^(k+1) = c - M * x^k.
Returns the vector c. It calls a GPU kernel
num_rows | magma_int_t number of rows | |
b | magma_z_vector RHS b | |
d | magma_z_vector vector with diagonal entries | |
c | magma_z_vector* c = D^(-1) * b |
magma_int_t magma_zjacobiiter | ( | magma_z_sparse_matrix | M, | |
magma_z_vector | c, | |||
magma_z_vector * | x, | |||
magma_z_solver_par * | solver_par | |||
) |
Iterates the solution approximation according to x^(k+1) = D^(-1) * b - D^(-1) * (L+U) * x^k x^(k+1) = c - M * x^k.
M | magma_z_sparse_matrix input matrix M = D^(-1) * (L+U) | |
c | magma_z_vector c = D^(-1) * b | |
x | magma_z_vector* iteration vector x | |
solver_par | magma_z_solver_par* solver parameters |
magma_int_t magma_zjacobiiter_precond | ( | magma_z_sparse_matrix | M, | |
magma_z_vector * | x, | |||
magma_z_solver_par * | solver_par, | |||
magma_z_preconditioner * | precond | |||
) |
Iterates the solution approximation according to x^(k+1) = D^(-1) * b - D^(-1) * (L+U) * x^k x^(k+1) = c - M * x^k.
M | magma_z_sparse_matrix input matrix M = D^(-1) * (L+U) | |
c | magma_z_vector c = D^(-1) * b | |
x | magma_z_vector* iteration vector x | |
solver_par | magma_z_solver_par* solver parameters | |
solver_par | magma_z_precond_par* precond parameters |
magma_int_t magma_zjacobisetup | ( | magma_z_sparse_matrix | A, | |
magma_z_vector | b, | |||
magma_z_sparse_matrix * | M, | |||
magma_z_vector * | c | |||
) |
Prepares the Jacobi Iteration according to x^(k+1) = D^(-1) * b - D^(-1) * (L+U) * x^k x^(k+1) = c - M * x^k.
A | magma_z_sparse_matrix input matrix A | |
b | magma_z_vector RHS b | |
M | magma_z_sparse_matrix* M = D^(-1) * (L+U) | |
c | magma_z_vector* c = D^(-1) * b |
magma_int_t magma_zjacobisetup_diagscal | ( | magma_z_sparse_matrix | A, | |
magma_z_vector * | d | |||
) |
It returns a vector d containing the inverse diagonal elements.
A | magma_z_sparse_matrix input matrix A | |
d | magma_z_vector* vector with diagonal elements |
magma_int_t magma_zjacobisetup_matrix | ( | magma_z_sparse_matrix | A, | |
magma_z_sparse_matrix * | M, | |||
magma_z_vector * | d | |||
) |
Prepares the Matrix M for the Jacobi Iteration according to x^(k+1) = D^(-1) * b - D^(-1) * (L+U) * x^k x^(k+1) = c - M * x^k.
It returns the preconditioner Matrix M and a vector d containing the diagonal elements.
A | magma_z_sparse_matrix input matrix A | |
M | magma_z_sparse_matrix* M = D^(-1) * (L+U) | |
d | magma_z_vector* vector with diagonal elements of A |
magma_int_t magma_zjacobisetup_vector | ( | magma_z_vector | b, | |
magma_z_vector | d, | |||
magma_z_vector * | c | |||
) |
Prepares the Jacobi Iteration according to x^(k+1) = D^(-1) * b - D^(-1) * (L+U) * x^k x^(k+1) = c - M * x^k.
Returns the vector c
b | magma_z_vector RHS b | |
d | magma_z_vector vector with diagonal entries | |
c | magma_z_vector* c = D^(-1) * b |