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IPCC at ICL

INNCOVATIVE

COMPUTING LABORATORY

ICL Intel Parallel
Computing Center

The University of Tennessee’s Innovative Computing
Laboratory is now an Intel Parallel Computing Center.

The Intel Parallel Computing Center (IPCC) program is composed of
universities, institutions, and labs that are leaders in their field,
focusing on modernizing applications to increase parallelism and
scalability through optimizations that leverage cores, caches, threads,
and vector capabilities of microprocessors and coprocessors.
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The objective of the Innovative Computing Laboratory’s IPCC is the
development and optimization of numerical linear algebra libraries and
technologies for applications, while tackling current challenges in
heterogeneous Intel® Xeon Phi™ coprocessor-based high-performance
computing. In collaboration with Intel’s MKL team, the IPCC at ICL will
modernize the popular LAPACK and ScaLAPACK libraries to run
efficiently on current and future manycore architectures, and will
disseminate the developments through the open source MAGMA MIC
library.
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IPCC at ICL

LAPACK and
ScaLAPACK

K Standard dense linear
algebra (DLA) libraries
 Many applications rely
on DLA
* Designed in 80/90’s for

kcache-based architectures I

Must be redesigned for moder
heterogeneous systems with
multi/many-core CPUs and
COProcessors.

J

3/19

Xeon Phi
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IPCC at ICL

* Develop
— Next generation LAPACK / ScaLAPACK
— Programming models, and
— Technologies
for heterogeneous
Intel Xeon Phi-based platforms

LAPACK / ScaLAPACK

- Disseminate developments Haﬂa‘ge
through the MAGMA MIC library / Srawaxs

* High value proposition
MAGMA MIC enables ease of use and adoption of Intel Xeon Phi architectures

in applications as linear algebra is fundamental to scientific computing
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A New Generation of

Dense Linear Algebra Libraries

Software/Algorithms follow hardware evolution in time

LINPACK (70’s)
(Vector operations)

LAPACK (80’s)
(Blocking, cache
friendly)

ScaLAPACK (90’s)
(Distributed Memory)

PLASMA (00’s)
New Algorithms
(many-core friendly)

MAGMA
Hybrid Algorithms .\><
(heterogeneity friendly) .T: }T‘
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Rely on
- Level-1 BLAS
operations

Rely on
- Level-3 BLAS
operations

Rely on
- PBLAS Mess Passing

Rely on
- a DAG/scheduler
- block data layout
- some extra kernels

Rely on
- hybrid scheduler
- hybrid kernels
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MAGMA MIC
LAPACK for heterogeneous systems

- MAGMA MIC

— Project on the development of a new generation of HP Linear Algebra Libraries
— To provide LAPACK/ScaLAPACK on heterogeneous Intel Xeon Phi-based systems
— Well established project with product disseminated through the MAGMA MIC libraries:

MAGMA MIC 0.3 (2012-11-13)
MAGMA MIC 1.0 (2013-05-03) |
MAGMA MIC 1.1 (2014-01-07) |
MAGMA MIC 1.2 (2014-09-17) |
MAGMA MIC 1.3 (2014-11-15)

| * For heterogeneous, shared memory systems
= * Included are the main factorizations, linear system and eigen-problem solvers
7 * Open Source Software ( http:/icl.cs.utk.edu/magma )

* Collaborators
— Intel MKL Team
— UC Berkeley, UC Denver, INRIA (France), KAUST (Saudi Arabia)
— Community effort, similar to LAPACK/ScaLAPACK
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Key Features of MAGMA MIC

HIBRID ALGORITHMS

MAGMA MIC uses hybrid algorithms where the computation is split into tasks of
varying granularity and their execution scheduled over the hardware components.
Scheduling can be static or dynamic. In either case, small non-parallelizable tasks,
often on the critical path, are scheduled on the CPU, and larger more parallelizable
ones, often Level 3 BLAS, are scheduled on the MICs.

PERFORMANCE & ENERGY EFFICIENCY

MAGMA MIC on KNC

LU factorization in double precision arithmetic
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FEATURES AND SUPPORT

MAGMA MIC 1.3

Linear system solvers
Eigen-problem solvers
SVD

CPU/AQ interface
MIC/Native interface

Multiple precision
support
Mixed-precision

iter. refinement solvers

Multicore and multi-MIC
support

LAPACK testing

Linux
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Methodology overview

A methodology to use all available resources:
« MAGMA MIC uses hybrid algorithms

— Representing linear algebra algorithms as collections Hybrid CPU+MIC algorithms
of tasks and data dependencies among them (small tasks for multicores and
arge tasks for MICs)
— Properly scheduling tasks' execution over
multicore CPUs and manycore coprocessors \
| MIC
- Successfully applied to fundamental 'b<
linear algebra algorithms et
— One- and two-sided factorizations and solvers b y
— lterative linear and eigensolvers |
MIC

* Productivity
1) High level,
2) Leveraging prior developments;
3) Exceeding in performance homogeneous solutions
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A Hybrid Algorithm Example

Left-looking hybrid Cholesky

to parallel hybrid
, MAGMA
From sequential

LAPACK iy | 1 for(j=0, j<n; j+=nb){
for(j=0, j<n; j+=nb) { 2 jb=min(nb, n-j);

ib = min(nb, n-j); 3 magma_zherk( MagmaUpper, MagmaConjTrans,
zherk( MagmaUpper jb, j, one, dA(0,j), Idda, one, dA(j,j), Idda, queue);
jb,j,one,dA( | 4 magma_zgetmatrix_async( jb, jb, dA(j,j), Idda, work, jb, queue, &event);
o 5 if(j+b<n)
d g;f;mn()MagmaCO 6 magma_zgemm( MagmaConjTrans, MagmaNoTrans, jb, n-j-jb, j, one,
dA(0,)), Idd] dA(0,), Idda, dA(0,j+jb), Idda, one, dA(j, j+jb), Idda, que

7 magma_event_sync( event );
zpotrf( MagmaUpper| 8 zpotrf( MagmaUpperStr, &jb, work, &jb, info);

if(info = 0) 9  if(infol=0)

ifo+=J 10 “info+=j
If (7+ib) < n) { " magma_zsetmatrix_async(jb, jb, work, jb, dA(j, j), Idda, queue, &event);

12 If(j+jb) <n){
ztrsm( Magmaleft,| 13 magma_event_sync( event );
.} 14 magma_ztrsm( MagmalLeft, MagmaUpper, MagmaConjTrans, MagmaNo
| ) jb, n-j-ib, one, dA(j,j), Idda, dA(j,j+jb), Idda, queue);
}
}

Note: + MAGMA and LAPACK look similar
» Difference is lines in red, specifying data transfers and dependencies
« Differences can be hidden in a dynamic scheduler making the top level
representation of MAGMA MIC algorithms almost identical to LAPACK
me JNIVERSITYof
e "TENNESSEE
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A Hybrid Algorithm Example

Left-looking hybrid Cholesky

to parallel hybrid
MAGMA

1 for(j=0, j<n; j+=nb) {

jb = min(nb, n-j);
magma_zherk( MagmaUpper, MagmaCon;jTr
jb, j, one, dA(0,j), Idda, one, d
magma_zgetmatrix_async( jb, jb, dA(j,j), ldd
if (j+jb < n)
magma_zgemm( MagmaConjTrans, Magmqi
dA(0,j), Idda, dA(0,j+jb), Idc
magma_event_sync( event );
zpotrf( MagmaUpperStr, &jb, work, &jb, info);
if (info 1= 0)
*info +=j;
magma_zsetmatrix_async(jb, jb, work, jb, dA
If (j+jb) < n) {
magma_event_sync( event );

magma_ztrsm( MagmaLeft, MagmaUpper,
jb, n-j-jb, one, dA(j,j), Idda,

* MAGMA and LAPACK look similar

From sequential
LAPACK wmp
for( j=0, j<n; j+=nb) { 2
jb =min(nb, n-); 3
zherk( MagmaUpper
jb,j, one, dA(O | 4
o 5
if (b <n) 6
zgemm( MagmaCo
dA(0,)), ldd]
7
zpotrf( MagmaUpper| 8
if (info 1= 0) 9
*info +=; 10
f G4ib) < ) { I
12
ztrsm( MagmalLeft,| 13
ib,nf 14
}
}
Note:

MAGMA MIC runtime environment
» Scheduling can be static

or dynamic
* Dynamic is based on QUARK

 Uses CUDA streams to offload
computation to the GPU

« Difference is lines in red, specifying data transfers and dependencies
» Differences can be hidden in a dynamic scheduler making the top level
representation of MAGMA MIC algorithms almost identical to LAPACK
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A Hybrid Algorithm Example

Left-looking hybrid Cholesky

to parallel hybrid
MAGMA

MAGMA MIC runtime environment

1 for(j=0, j<n; j+=nb) {

jb = min(nb, n-j);
magma_zherk( MagmaUpper, MagmaCon;jTr
jb, j, one, dA(0,j), Idda, one, d
magma_zgetmatrix_async( jb, jb, dA(j,j), ldd
if (j+jb < n)

magma_zgemm( MagmaConjTrans, Magmji ®

dA(0,)), Idda, dA(0,j+jb), Id
magma_event_sync( event );

zpotrf( MagmaUpperStr, &jb, work, &jb, info); i

if (info 1= 0)
*info += ;
magma_zsetmatrix_async(jb, jb, work, jb, dA

If (j+jb) < n){ !
magma_event_sync( event ); |

Offloaded
to the MIC

g Offloaded

@ tothe MIC

magma_ztrsm( MagmaLeft, MagmaUpper,
jb, n-j-jb, one, dA(j,j), Idda,

From sequential
LAPACK wmp
for( j=0, j<n; j+=nb) { 2
jb =min(nb, n-); 3
zherk( MagmaUpper

jb,j, one, dA(O | 4

o 5

if (b <n) 6

zgemm( MagmaCo
dA(0,j), Idd]

7

zpotrf( MagmaUpper| 8

if (info 1= 0) 9
*info +=; 10

f 4i0) <) I
12
ztrsm( MagmalLeft,| 13
ib,nf 14

}
}
Note:

* MAGMA and LAPACK look similar

« Difference is lines in red, specifying data transfers and dependencies

» Differences can be hidden in a dynamic scheduler making the top level
representation of MAGMA MIC algorithms almost identical to LAPACK
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MIC Queue
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computed
on the MIC

| | CPU task #8 and
CPU-MIC
communications
are overlapped
with MIC
computations
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Programming models

» We developed two APlIs for offloading work to MIC:
/ Host Intel Xeon Phl\\

g Main () Ag server ()

N agha y,

based

\ PCle /

Both APIs have the same interface and abstract low level programming details

LLAPI based Compiler pragma offload based
«  Aserverruns on the MIC « APl is using Phi-specific
«  Communications are offload directives
implemented through «  Enhancements for CPU-MIC
LLAPI using SCIF communications

cLlour  ARNvEsTY
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Scheduling strategies

No need to explicitly code data
dependencies and data transfers. This
is hidden in the runtime system.

High-productivity with Dynamic Runtime Systems

Parallel execution

for (k = 0; k < min(MT, NT); k++){
zgeqrt(A[Kk;K], ...);
for (n =k+1; n < NT; n++)
zunmgqr(A[k;k], A[k;n], ...);
for (m =k+1; m < MT; m++){
ztsqrt(A[kKk],A[m;K], ...);
for (n =k+1; n < NT; n++)

ztsmqr(A[m;k], A[k;n], A[m;n], ..);

for (k= 0; k < min(MT, NT); k++){
Insert_Task(&zgeqrt, k, k, ...);
for (n = k+1; n < NT; n++)
Insert Task(&zunmgr, Kk, n, ...);
for (m = k+1; m < MT; m++){
Insert_Task(&ztsqrt, m, K, ...);
for (n = k+1; n < NT; n++)

Insert Task(&ztsmqr, m, n, K, ...);
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Performance on single MIC
QR AO with static and dynamic MAGMA
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Scalability on multiple MICs

Performance scales
MAGMA DGETRF Performance(Multiple Card) well in spite of PCI’s

W-4MIC A-3MIC ~8-2MIC =1 MIC bandwidth limitations
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2400
2200
2000
£ 1800
..c-': 1600 Host
(U} .
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\ compiler_xe_2013.1.117
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Plans & Goals:
Dense Linear Algebra

» Derive new methods and algorithmic improvements

— Eigensolvers and SVD using two-stage reductions
[ remove the memory-bound limitations of the LAPACK algorithms,
and depending on hardware show an order of magnitude improvement]

— Factorizations and solvers for symmetric indefinite problems

* Develop linear algebra on small matrices . ~ewer
— Batched linear algebra operations to o || Batched
provide support for various applications Lafcfrggf:lfe”s
— Batched LU, QR, and Cholesky o]
[ for the simultaneous factorization Pt y _

of many very small dense matrices ]
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Plans & Goals:
Sparse Linear Algebra (SLA)

» While extremely important for applications, SLA is
notorious for running only at a fraction of the peak of
modern architectures.

* Develop a highly optimized MAGMA MIC Sparse
package
[ include the standard CG, BICGSTAB, GMRES, and preconditioned versions ]

* Incorporate communication-avoiding algorithms to
significantly exceed in performance the standard

memory and latency bound algorithms.
[ include s-step methods, CA-GMRES, and blocked eigensolvers, e.g., LOBPCG ]
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Plans & Goals:
Mixed-Precision Methods

* Develop numerical algorithms that recognize and
exploit the presence of mixed-precision mathematics:

— Show 2x acceleration using mixed-precision iterative
refinement solvers for dense problems;

— Mixed-precision orthogonalization schemes to accelerate
applications, sparse iterative linear system and eigenproblem

solvers:
Step 1 Gram-matrix formation B := VTV 10 ~100,000 o -
on MICs in 0[] = | | AN =l N
B V' R R B R’
Step 2 Choleskv factorization RTR := B
on CPUS in Step 1 100 OXO Step 2 v Step 3
Step 3 Backward-substitution Q := VR~

on MICs in standard-precision. - —
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Plans & Goals:
Benchmarks

* Develop a set of benchmarks for both performance and
energy consumption. Include the

— Newly proposed HPCG, optimized for Intel Xeon Phi architectures

— Benchmarks for main communication and computation patterns
[ e.g., CPU-MIC communication, MIC copy, MIC broadcast, latencies,
representative BLAS 1/2/3, SpMV, SpMV, LU, SVD, etc. ]

- Show essential communication and computation patterns in
various applications

» Goal is to encourage the focus of both hardware and
software developers on architecture features and application
needs; incorporate in performance analysis tools
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Collaborators and Support

MAGMA team
http://icl.cs.utk.edu/magma

PLASMA team
http:/licl.cs.utk.edu/plasma

Intel MKL team intel) @\ The MathWorks

Collaborating partners

University of Tennessee, Knoxville

University of California, Berkeley

University of Colorado, Denver @
INRIA, France (StarPU team)

KAUST, Saudi Arabia
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