
Request Sequencing: Enabling Workflow for
Efficient Parallel Problem Solving in GridSolve

Yinan Li, Jack Dongarra
Department of Electrical Engineering and Computer Science

University of Tennessee
Knoxville, Tennessee 37996, USA

Email: {yili, dongarra}@eecs.utk.edu

Abstract— GridSolve employs a standard RPC-based model for
solving computational problems. There are two deficiencies asso-
ciated with this model when a computational problem essentially
forms a workflow consisting of a set of tasks, among which there
exist data dependencies. First, intermediate results are passed
among tasks going through the client, resulting in additional
data transport between the client and the servers, which is pure
overhead. Second, since the execution of each individual task is a
separate RPC session, it is difficult to exploit the potential paral-
lelism among tasks. NetSolve request sequencing partially solves
the problem of unnecessary data transport by clustering a set of
tasks based upon the dependency among them and scheduling
them to run together. This approach has two limitations. First, the
only mode of execution it supports is on a single server. Second,
it prevents the potential parallelism among tasks from being
exploited. This paper presents an enhanced request sequencing
technique that eliminates those limitations and solves the above
problems. The core features of this work include automatic DAG
construction and data dependency analysis, direct inter-server
data transfer and the capability of parallel task execution. The
objective of this work is to allow users to construct workflow
applications for efficient parallel problem solving in GridSolve.

I. INTRODUCTION

GridSolve [1] employs a standard RPC-based model, which
is shown in Figure 1, for solving computational problems.
A complete session of calling a remote service in GridSolve
consists of two stages. In the first stage, the client sends a
request for a remote service call to the agent, which returns
a list of capable servers ordered by some measure of their
capability. The actual remote service call takes place in the
second stage. The client sends input data to the server that
is most capable; the server finishes the task and returns the
result back to the client. This model forms a star topology
with the client being the center, which means that all data
traffic must involve the client. This model is efficient for
solving computational problems consisting of a single task.
A task in this paper is defined as a single GridRPC call to an
available GridSolve service. GridRPC [2] is a standard API
that describes the capability of Remote Procedure Call (RPC)
in a Grid computing environment. When a computational
problem essentially forms a workflow consisting of a set of
tasks with data dependencies, however, this model is highly
inefficient due to two deficiencies. First, intermediate results
are passed among tasks via the client, resulting in additional
data traffic between the client and the servers, which is pure

overhead. Second, since the execution of each individual task
is a separate RPC session, it is difficult to exploit the potential
parallelism among tasks.

Fig. 1: The standard RPC-based computation model of Grid-
Solve.

For example, considering the following sequence of
GridRPC calls (this example omits the creation and initial-
ization of GridRPC function handles):

grpc_call("func1", ivec, ovec1, ovec2, n);
grpc_call("func2", ovec1,n);
grpc_call("func3", ovec2, n);
grpc_call("func4", ovec1, ovec2, ovec, n);

In this example, the outputs of func1, namely ovec1 and
ovec2, are returned back to the client and immediately sent
from the client to the servers running func2 and func3,
resulting in two unnecessary data movements. Similarly, the
output of func2 and func3 is first transferred back to the
client and immediately sent to the server running func4.
Figure 2 illustrates the data flow for the above calls. This
example demonstrates that when data dependencies exists
among tasks, it may be unnecessary to transfer intermediate
results back to the client, since such results will be needed
immediately by the subsequent tasks.

To eliminate unnecessary data traffic involving the client,
NetSolve [3] proposed a technique called request sequenc-

ing [4], which means clustering a set of tasks based upon
the dependency among them and scheduling them to run
together. Specifically, NetSolve request sequencing constructs
a Directed Acyclic Graph (DAG) that represents the set of
tasks and the data dependency among them, and assigns the
entire DAG to a selected server for execution. Intermediate
results are not passed back to the client, but used locally
by requests that need them. This technique ensures that no
unnecessary data is transferred. The reduction in network
traffic improves computational performance by decreasing the
overall request response time. However, this approach has two
limitations. First, the only mode of execution it supports is on
a single server. Second, there is no way to exploit the potential
parallelism among tasks in a sequence unless the single server
has more than one processor.

This paper presents an enhanced request sequencing tech-
nique that eliminates the above limitations. The objective of
this work is to provide a technique for users to efficiently
solve computational problems in GridSolve by constructing
workflow applications that consist of a set of tasks, among
which there exist data dependencies. In the rest of the paper,
we will refer to the enhanced request sequencing technique
as GridSolve request sequencing. The rest of this section will
give a brief overview of GridSolve request sequencing.

In GridSolve request sequencing, a request is defined as
a single GridRPC call to an available GridSolve service.
The term request and task are used interchangeably in this
paper. A workflow application is constructed as a set of
requests, among which there may exist data dependencies.
For each workflow application, the set of requests is scanned,
and the data dependency between each pair of requests is
analyzed. The output of the analysis is a DAG representing
the workflow: tasks within the workflow are represented as
nodes, and data dependencies among tasks are represented as
edges. The workflow scheduler then schedules the DAG to run
on the available servers. As stated above, GridSolve request
sequencing eliminates the limitations of the request sequencing
technique in NetSolve. A set of tasks can potentially be
executed concurrently if they are completely independent.

In order to eliminate unnecessary data transport when tasks
are run on multiple servers, the standard RPC-based computa-
tional model of GridSolve must be extended to support direct
data transfer among servers. Specifically, in order to avoid
the case that intermediate results are passed among tasks via
the client, servers must be able to pass intermediate results
among each other, without the client being involved. Figure 3
illustrates the alternative data flow of Figure 2, with direct data
transfer among servers.

Supporting direct inter-server data transfer requires server-
side data storage. A server may have already received some
input arguments and stored them to the local storage, while
waiting for the other ones. In addition, a server may store its
outputs to the local storage in order to later transfer them to
the servers that need them. The usage of local data storage
depends on the way in which direct inter-server data transfer
is implemented. There are two approaches for implementing

Fig. 2: An example of the standard data flow in GridSolve.

Fig. 3: The data flow in Figure 2 with direct inter-server data
transfer.

direct inter-server data transfer. The first approach is to have
the server that produces an intermediate result “push” the
result to the servers that need it. An alternative approach is
to have the server that needs an intermediate result “pull” the
result from the server that produces it. In the first approach,
local storage is used by the consumer of an intermediate result.
In the second approach, local storage is used by the producer
of an intermediate result. In this paper, we adopt the second
approach, and present a method of using special data files for
local data storage.

The paper is organized as follows. Section II gives a detailed
introduction to workflow modeling and dependency analysis.
Section III discusses the idea and implementation of direct
inter-server data transfer in GridSolve. Section IV describes
the algorithm for workflow scheduling and execution. Sec-
tion V presents the API of GridSolve request sequencing.
Section VI describes the experiments using GridSolve request
sequencing to build practical workflow applications. The paper
concludes with Section VII.

II. WORKFLOW MODELING AND AUTOMATIC
DEPENDENCY ANALYSIS

A. Directed Acyclic Graph and Data Dependency

In GridSolve request sequencing, a Directed Acyclic Graph
(DAG) represents the requests within a workflow and the data
dependencies among them. Each node in a DAG represents
a request, and each edge represents the data dependency
between two requests. Data dependencies imply execution
dependencies since data flow controls the order of execution
of requests. Given a set of GridRPC calls, we identify four
types of data dependencies in GridSolve request sequencing,
listed as follows:
• Input-After-Output (RAW) Dependency

This represents the cases in which a request relies on
the output of a previous request in the sequence. In such
cases, the program order must be preserved. The actual
data involved in the dependency will be transferred di-
rectly between servers, without the client being involved.

• Output-After-Input (WAR) Dependency
This represents the cases in which an output argument of
a request is the input argument of a previous request in
the sequence. In such cases, the program order must be
preserved.

• Output-After-Output (WAW) Dependency
This represents the cases in which two successive requests
in the sequence have references to the same output
argument. In such cases, the program order must be
preserved. The output of the request that is depended on
will not be transferred back to the client since the shared
data will be overwritten shortly by the depending request.

• Conservative-Scalar Dependency
This type of scalar data dependency occurs in the conser-
vative sequencing mode that will be introduced shortly.

In all these cases, the program order must be preserved.
Two requests with any one of the above types of dependencies
must be executed in the program order: one request must
wait for the completion of the other request it is depending
on. Parallel execution is only applicable to requests that are
completely independent. The first three types of dependencies
apply to non-scalar arguments such as vectors and matrices.
Figure 4 gives an example DAG with all types of non-scalar
data dependencies (RAW, WAR, and WAW).

For scalar arguments, it is much more difficult and even
impossible to determine if two scalar arguments are actually
referencing the same data, since scalar data is often passed by
value. Our method is to provide users with several sequencing
modes that use different approaches for analyzing data depen-
dencies among scalar arguments. The supported modes are as
follows:
• Optimistic Mode

In this mode, scalar arguments are ignored when ana-
lyzing data dependencies. Thus the users should make
sure that data dependencies among scalar arguments are
carefully organized and will not cause incorrect execution
behavior.

• Conservative Mode
In this mode, two successive requests with one having
an input scalar argument and the other having an output
scalar argument, are viewed as having a conservative-
scalar dependency, if these two scalar arguments have
the same data type.

• Restrictive Mode
In this mode, scalar arguments are restricted to be passed
by reference, and data dependencies among scalar argu-
ments are analyzed as usual.

Figure 5 depicts what it looks like in Figure 4 with one
conservative scalar dependency. Notice that this dependency
will not affect the order of execution of the DAG since there
is already a non-scalar data dependency.

a_0

b_1

RAW

c_1

RAW

d_2

WAW

WAR WAW

e_3

RAW

Fig. 4: An example DAG with all three kinds of
non-scalar data dependencies.

a_0

b_1

RAW

c_1

RAW

d_2

WAW

WAR WAW

e_3

RAWSCALAR

Fig. 5: The example DAG in Figure 4 with an
additional scalar data dependency.

B. Automatic DAG Construction and Dependency Analysis

In GridSolve, non-scalar arguments are always passed by
reference. In addition, each argument has some attributes
associated with it. These attributes describe the data type of

the argument (integer, float, double, etc.), the object type of
the argument (scalar, vector, or matrix), and the input/output
specification of the argument (IN, OUT, or INOUT). These
attributes, along with the data reference, can be used to
determine if two arguments refer to the same data item. This
is the basis for automatic DAG construction and dependency
analysis. The pseudo-code of the algorithm for automatic
DAG construction and dependency analysis is presented in
Algorithm 1. The complexity of the algorithm is O(N2M2).

Algorithm 1 The algorithm for automatic DAG construction
and dependency analysis.

1: Create an empty DAG structure;
2: Scan the set of tasks, and insert a new node for each task

into the DAG structure;
3: Let NodeList denote the list of nodes in the DAG;
4: Let N denote the number of nodes in the DAG;
5: for i = 1 to N − 1 do
6: Let P denote node NodeList[i];
7: Let PArgList denote the argument list of node P;
8: for j = i + 1 to N do
9: Let C denote node NodeList[j];

10: Let CArgList denote the argument list of node C;
11: for each argument PArg in PArgList do
12: for each argument CArg in CArgList do
13: if Parg and CArg have identical references

then
14: if PArg.inout = (INOUT OR OUT) AND

CArg.inout = (IN OR INOUT) then
15: Insert a RAW dependency RAW(P , C);
16: else if PArg.inout = IN AND CArg.inout

= (INOUT OR OUT) then
17: Insert a WAR dependency WAR(P , C);
18: else if PArg.inout = (INOUT OR OUT)

AND CArg.inout = OUT then
19: Insert a WAW dependency WAW(P , C);
20: end if
21: end if
22: end for
23: end for
24: Assign the appropriate rank to node C;
25: end for
26: Assign the appropriate rank to node P ;
27: end for

N denotes the number of nodes in the DAG, and M denotes
the maximum number of arguments over all the nodes (re-
quests). Notice that in the algorithm, each node is assigned a
rank, which is an integer representing the scheduling priority
of this node. The algorithm for workflow scheduling and
execution uses this rank information to schedule nodes to
run. The algorithm for workflow scheduling and execution
is presented in Section IV. In addition to DAG analysis and
rank assignment, the above algorithm also sets the following
variables in the DAG structure for each argument of each
request:

• pass_back and data_handle: the boolean vari-
able pass_back indicates whether an output argument
should be passed back to the client or not. The boolean
variable data_handle indicates if the data of an input
argument is coming directly from another request. If an
output argument is involved in either a RAW or WAW
data dependency, the variable pass_back associated
with the argument is set to FALSE; otherwise, it is set
to TRUE. If an input argument is involved in a RAW
data dependency, the variable data_handle associated
with the argument is set to TRUE; otherwise, it is set to
FALSE.

• target_request: this variable specifies the list of
requests (servers) that are depending on the argument, if
the argument is an output one. This information is neces-
sary for direct passing of intermediate data between two
requests by transferring the intermediate data between the
servers running the requests.

• source_request: this variable contains the identifier
of the request (server) that produces the argument, if the
argument is an output one and is involved in either a
RAW or WAW data dependency.

As an example, considering the following workflow (this
workflow is programmed using the API functions that will be
introduced in Section V):

grpc_sequence_begin(OPTIMISTIC_MODE);
grpc_submit("return_int_vector",ivec,n,ovec);
grpc_submit("vpass_int", ovec, n);
grpc_submit("iqsort", ovec, n);
grpc_submit("int_vector_add5",n,ovec,ovec2);
grpc_sequence_end(0);

Figure 6 depicts the DAG produced for the above sequence
by the above algorithm.

The DAG produced by the above algorithm may con-
tain redundant edges from the perspective of both exe-
cution and data traffic. For example, in Figure 6, the
RAW dependency between return_int_vector and
int_vector_add5 is redundant, since the input argument
ovec of int_vector_add5 will come from iqsort
instead of return_int_vector. Removing this redundant
edge will affect neither the execution order nor the effective
data flow of the DAG. Thus the final step in building and ana-
lyzing the DAG is to remove all such redundant dependencies.
Figure 7 shows the DAG in Figure 6 after all redundant edges
are removed.

III. DIRECT INTER-SERVER DATA TRANSFER

An approach to inter-server data transfer via a Grid file
system called Gfarm was introduced in [5]. This is similar
to using Distributed Storage Infrastructure (DSI) [6] in Grid-
Solve. In GridSolve, DSI is mainly used for building external
data repositories to provide large chunks of both input data and
output storage to tasks running on servers. Both approaches
use external libraries that must be installed and configured
prior to use.

return_int_vector_0

vpass_int_1

RAW

iqsort_2

RAW

int_vector_add5_3

RAWRAW

RAW

RAW

Fig. 6: An example DAG before redundant edges are
removed.

return_int_vector_0

vpass_int_1

RAW

iqsort_2

RAW

int_vector_add5_3

RAW

Fig. 7: The example DAG in Figure 6 after all the
redundant edges are removed.

In this paper, we describe our approach to direct inter-
server data transfer via file staging. File staging is a service in
GridSolve that moves files between two servers. Our approach
uses file staging as a medium of transferring intermediate data
between two servers. Specifically, intermediate results are first
saved as data files, and are then staged to the target servers,
on which they are restored by the tasks depending on them.
This approach not only eliminates unnecessary data transport,
it also protects the system from losing data, since data can be
easily retrieved from locally saved files. As mentioned above,
there are two alternative approaches for implementing direct
inter-server data transfer. The one adopted in this paper is
to have the server that needs an intermediate result “pull”
the result from the server that produces it. It is therefore
necessary for the server that needs an intermediate result to

know which server produces it. Our solution is to have the
server that produces the intermediate result send a data handle
via the client to the servers that need the result. A data handle
is a small data structure that describes various aspects of an
argument in GridSolve, listed as follows:
• Object type: scalars, vectors, matrices, etc.
• Data type: integer, float, double, complex, etc.
• Storage pattern: row major or column major.
• Task name: the name of the task that produces the data.
• Server name: the name of the server, on which the data

is produced and saved.
• Data size: the product of two dimensions of the data.
• File name: the name of the file that temporarily stores

the data.
• Path: the path to the file where the data is stored.

In GridSolve request sequencing, data handles are used as
virtual pointers to intermediate results stored in special data
files. Data handles are passed between two servers via the
client. The recipient of a data handle, the server that needs the
data pointed to by the data handle, asks for the intermediate
data by sending a request to the server that stores the data.
Upon receiving the request, the server that stores the interme-
diate data sends it directly to the requester via file staging,
without the client being involved. In this approach, the client
is involved in the transfer of data handles, instead of being
involved in the transfer of actual data. Considering that a data
handle usually has a much smaller size than the actual data
it points to, this approach can achieve a significant saving in
time. Figure 8 illustrates the approach. The implementation

Fig. 8: The approach to direct inter-server data transfer in
GridSolve request sequencing.

of this approach involves proposing a representation format
for data handles. We use XML to represent data handles,
simply because it is easy to encode and parse. In addition,
the current communication protocol in GridSolve needs to be
augmented to allow richer interactions between a client and

a server and between two servers. Specifically, an augmented
protocol should be able to support the following interactions:
• A server sends an acknowledgement to the client after

finishing a computational task. The acknowledgement
message contains a data handle for each intermediate
result.

• The client sends a notification to a server telling it to start
executing the assigned computational task. The notifica-
tion contains the data handle for each input argument, the
data of which will be transferred directly from another
server.

• A server sends a request to another server asking for the
actual data represented by a data handle.

• A server responds to a request for the actual data repre-
sented by a data handle by staging the file that stores the
data to the server that issues the request.

As an example, considering the workflow as follows:

grpc_sequence_begin(OPTIMISTIC_MODE);
grpc_submit("foo", 10, a, b);
grpc_submit("bar", 10, b, c, d);
grpc_sequence_end(0);

The execution of the sequence involves the following steps:
1) The client constructs a DAG for the workflow.
2) The DAG is scheduled and requests are assigned to the

available servers. The algorithm for mapping requests to
the available servers is introduced in Section IV. In this
case, suppose tasks foo and bar are assigned to two
different servers S1 and S2.

3) The client notifies S1 to begin executing the task foo
by sending a notification message to S1. The client also
sends the input argument a to S1.

4) After finishing the execution of foo, S1 stores the
output argument b to a file, creates a data handle for
b, and sends an acknowledgement message back to the
client. The message contains the data handle for b.

5) When the client receives the acknowledgement from S1,
it checks the DAG and notifies S2 to begin executing the
task bar if possible by sending a notification message
to S2. The message contains the data handle for b. It
also sends the input argument c to S2.

6) Upon receiving and parsing the message received from
the client, S2 sends a request to S1 asking for the actual
data pointed to by the data handle for b.

7) S1 stages the file storing the output argument b to S2.
8) S2 reads the input argument b from the file. If all its

input arguments are available, S2 can start to execute
now; otherwise it has to wait until all its input arguments
are available.

9) After finishing the execution, S2 sends the output argu-
ment d to the client.

IV. WORKFLOW SCHEDULING AND EXECUTION

As mentioned in Section II, after the dependency analysis,
a DAG is built for a workflow and each node in the DAG

is assigned an integer representing the rank of that node. The
rank of a node indicates the scheduling priority of the node. A
smaller integer means a higher rank. The client will schedule
and execute a workflow based on the rank of each node.
Specifically, nodes with the same rank are independent of each
other and can be scheduled to run simultaneously. Initially, the
client will schedule the nodes with the highest rank (rank 0)
to start executing. Notice that all the input arguments for such
nodes should be available at the time of execution. The client
will schedule the remaining nodes to run if and only if both
the following two conditions are satisfied:
• All the input arguments are available.
• All the dependencies involving the node are resolved.

A dependency is considered being resolved if the node that
is depended on has finished its execution. A resolved depen-
dency is removed from the DAG. The algorithm for workflow
scheduling and execution is shown in Algorithm 2. The client
executes the algorithm and acts as the manager of DAG
execution. The algorithm uses level-based clustering to group

Algorithm 2 The algorithm for workflow scheduling and
execution.

1: Let N denote the total number of nodes in the workflow
to be scheduled;

2: Let M denote the number of requests that have been
scheduled;

3: N = M = 0;
4: CurrentSchedRank = 0;
5: repeat
6: NodeList = NodeWithRank(CurrentSchedRank);
7: K = NumNodes(NodeList);
8: AssignRequestsToServers(NodeList);
9: ExecuteNodes(NodeList);

10: WaitUntilFinished(NodeList);
11: CurrentSchedRank = CurrentSchedRank + 1;
12: M = M + K;
13: until M = N

nodes that can be scheduled to run simultaneously. Nodes
with the same rank are viewed as on the same scheduling
level, and are clustered and scheduled to run simultaneously.
In the first iteration, the algorithm initially schedules all the
nodes on the first level (i.e., nodes with rank 0) to run.
In the subsequent iterations, the algorithm will schedule the
next level to run if and only if all the nodes on the current
scheduling level have finished their execution. In this way, the
above two conditions are always satisfied when scheduling
nodes to run, since the rank is assigned with accordance
to the dependency relationships among nodes. Notice that
the routine AssignRequestToServers assigns the nodes
on the current scheduling level to the available servers. The
assignment of requests to the available servers is critical to the
overall performance of the execution of a DAG. In our current
implementation, we use a simple strategy to assign tasks on
a specific level onto the available servers. Specifically, the
round-robin method is used to evenly assign tasks on a specific

a_0

b_1

RAW

c_1

RAW

d_1

WAW

e_2

WAR RAW

f_2

WAW

g_3

RAW WAR

Fig. 9: An example DAG used for illustrating DAG scheduling
and execution.

level onto the available servers. As an example, considering
the DAG shown in Figure 9. Suppose there are 2 available
servers, namely S1 and S2. The scheduling result is shown
as follows:

Level 0: a_0 -> S1
Level 1: b_1 -> S1; c_1 -> S2; d_1 -> S1
Level 2: e_2 -> S1; f_2 -> S2
Level 3: g_3 -> S1;

The above algorithm is primitive and probably will be highly
inefficient when the workflow to schedule is complex. A
major deficiency of the algorithm is that it does not take
into consideration the differences among tasks and does not
really consider the mutual impact between task clustering and
network communication. In addition, sometimes it will be
helpful for reducing the total execution time if some tasks
on a specific scheduling level are scheduled to run before
other tasks on the same level. The algorithm, however, does
not support this kind of out-of-order execution of tasks on
the same scheduling level. This primitive algorithm will be
replaced by a more advanced one in our future work.

V. GRIDSOLVE REQUEST SEQUENCING API

One important design goal of GridSolve request sequencing
is to ease the programming of workflow applications by
providing users with a small set of API functions, presented
as follows:

• grpc_sequence_begin(int mode)
This function marks the beginning of a workflow and tells
the system which sequencing mode is going to be used.

• grpc_submit(char *name, ...)
This function is used for submitting a request. Users

call this function by providing the name of a GridSolve
service and a list of input arguments.

• grpc_submit_arg_stack(
char *name, grpc_arg_stack *)
This function is used for the same purpose as the previous
one, with only one difference that it accepts a GridRPC
argument stack that contains all the input arguments,
instead of an explicit list of input arguments.

• grpc_sequence_end(int n, ...)
This function marks the end of a sequence. At this point
the DAG is built, scheduled, and executed on the available
servers. There may be cases in which users do want some
intermediate results to be passed back to the client. The
input parameters of this function are for such a purpose.
The first parameter specifies the number of intermediate
results that are to be passed back to the client. If the
first parameter is set to 0, no intermediate results will be
passed back to the client; otherwise, the following one
or more parameters list the arguments corresponding to
those intermediate results.

In a typical use of GridSolve request sequencing, a series
of requests within a workflow is enclosed by two functions
marking the beginning and the end of the workflow, as shown
by the above examples.

The current API does not support advanced workflow pat-
terns such as conditional branches and loops. We are planning
to add support to such advanced workflow patterns in the
future to make GridSolve request sequencing a more powerful
technique for workflow programming.

VI. APPLICATIONS AND EXPERIMENTS

This section presents experiments using GridSolve request
sequencing to build practical workflow applications. The first
application is to implement Strassen’s algorithm for matrix
multiplication. As shown below, Strassen’s algorithm works
in a layered fashion, and there are data dependencies between
adjacent layers. Thus it is natural to represent Strassen’s
algorithm as a workflow using GridSolve request sequencing.

The second application is to build a Montage workflow for
creating science-grade mosaics of astronomical images. Mon-
tage [7], [8], [9] is a portable toolkit for constructing custom
science-grade mosaics by composing multiple astronomical
images. Astronomical images are usually delivered in different
coordinate systems, map projections, spatial samplings image
size, etc [8]. The consequence is that it is difficult to study im-
age sets in different frequencies together. Thus, there is a need
in astronomy for a high-quality mosaic toolkit that assembles
multiple astronomical images into science-grade mosaics that
have a common coordinate system, map projection, etc [8].
This is the motivation of the Montage project. Montage uses
three steps to build a mosaic [9]:
• Re-projection of input images: this step re-projects

input images to a common spatial scale and coordinate
system.

• Modeling of background radiation in images: this
step rectifies the re-projected images to a common flux

scale and background level, therefore minimizing the
differences among images.

• Co-addition: this step co-adds re-projected, background-
rectified images into a final mosaic.

Each step consists of a number of tasks that are performed by
the corresponding Montage modules. There are dependencies
both between adjacent steps and among tasks in each step. A
typical montage application can have hundreds or even thou-
sands of tasks. Thus it would be painful to build a Montage
application by serially invoking each individual module. It
will be more efficient to use workflows in the development
of Montage applications.

A. Experiments with Strassen’s Algorithm

This subsection discusses a series of experiments with the
implementation of Strassen’s algorithm using GridSolve re-
quest sequencing. The first part of the experiments investigates
the performance gain of eliminating unnecessary data traffic
when a single server is used. The second part investigates both
the advantage of eliminating unnecessary data traffic and the
performance of parallel execution when multiple servers are
used. The servers used in the experiments are Linux boxes
with Dual Intel Pentium 4 EM64T 3.4GHz processors and
2.0 GB memory. The client, the agent, and the servers are all
connected via 100 Mb/s Ethernet.

1) Implementation: Strassen’s algorithm is a fast divide-
and-conquer algorithm for matrix multiplication. The compu-
tational complexity of this algorithm is O(n2.81), which is
better than the O(n3) complexity of the classic implemen-
tation. Strassen’s algorithm works on submatrices and tries
to reduce the number of submatrix multiplications (8 to 7)
with an increase in the number of matrix additions (4 to
18). Because of the significantly increased number of matrix
additions, Strassen’s algorithm is useful in practice for large
matrices. Strassen’s algorithm is recursive and works in a
block, layered fashion, as shown by the following equation
and Table I. Table I illustrates the outline of a single level
recursion of the algorithm [10].

C =
(

C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)
(1)

As shown in Table I, Strassen’s algorithm is organized in
a layered fashion, and there are data dependencies between
adjacent layers. Thus it is natural to represent a single level
recursion of the algorithm as a workflow and construct the
algorithm using GridSolve request sequencing. The DAG
representing the workflow for a single level recursion of
Strassen’s algorithm is shown in Figure 10. It can be seen
that on each layer, tasks can be performed fully in parallel,
since there is no data dependency among tasks on the same
layer. For instance, the seven submatrix multiplications (Q1 to
Q7) can each be executed by a separate process running on a
separate server. The following code fragment shows how the
workflow for a single level recursion of the algorithm can be
constructed using GridSolve request sequencing.

TABLE I: The outline of a single level recursion of Strassen’s
algorithm.

T1 = A11 + A22 T6 = B11 + B22

T2 = A21 + A22 T7 = B12 −B22

T3 = A11 + A12 T8 = B21 −B11

T4 = A21 −A11 T9 = B11 + B12

T5 = A12 −A22 T10 = B21 + B22

Q1 = T1 × T6 Q5 = T3 ×B22

Q2 = T2 ×B11 Q6 = T4 × T9

Q3 = A11 × T7 Q7 = T5 × T10

Q4 = A22 × T8

C11 = Q1 + Q4 −Q5 + Q7

C12 = Q3 + Q5

C21 = Q2 + Q4

C22 = Q1 −Q2 + Q3 + Q6

start

T1 T2T3 T4T5 T6 T7T8 T9T10

Q1 Q2Q5 Q6Q7 Q3Q4

C11 C22C21C12

stop

Fig. 10: The DAG representing the workflow for Strassen’s
algorithm.

grpc_sequence_begin(OPTIMISTIC_MODE);

/* the first layer: matrix addition */
grpc_submit("matadd", A11, A22, T1, m);
grpc_submit("matadd", A21, A22, T2, m);
.......................
grpc_submit("matadd", B11, B12, T9, m);
grpc_submit("matadd", B21, B22, T10, m);

/* the second layer: matrix multiply */
grpc_submit("matmul", T1,T6, Q1, m);
grpc_submit("matmul", T2, B11, Q2, m);
.......................
grpc_submit("matmul", T5, T10, Q7, m);

/* the third layer: matrix addition */
grpc_submit("matadd", Q1, Q4, S1, m);
grpc_submit("matsub", Q5, Q7, S2, m);
grpc_submit("matadd", Q3, Q1, S3, m);
grpc_submit("matsub", Q2, Q6, S4, m);

/* the forth layer: matrix addition */
grpc_submit("matsub", S1, S2, C11, m);
grpc_submit("matadd", Q3, Q5, C12, m);
grpc_submit("matadd", Q2, Q4, C21, m);
grpc_submit("matsub", S3, S4, C22, m);

grpc_sequence_end(0);

 0

 20

 40

 60

 80

 100

 120

 140

 0 500 1000 1500 2000 2500

E
xe

cu
tio

n
tim

e
(s

ec
)

N

Without direct inter-server data transfer
With direct inter-server data transfer

Fig. 11: The execution time of Strassen’s algorithm as a
function of N on a single server, both with and without inter-
server data transfer.

2) Results and Analysis: Figure 11 plots the execution
time as a function of N (matrix size) of Strassen’s algorithm
on a single server, both with and without inter-server data
transfer. This figure demonstrates the advantage of eliminating
unnecessary data traffic when a single server is used. It can
be seen in the figure that the computational performance with
direct inter-server data transfer is consistently better than that
without the feature. This figure shows the case that only one
server is used. In this case, intermediate results are passed
between tasks locally within the single server when direct
inter-server data transfer is enabled. When multiple servers
are used, intermediate results are transferred directly among
servers. Considering that servers are typically connected using
high-speed interconnections, the elimination of unnecessary
data traffic will still be helpful in boosting the performance
in the case that multiple servers are used. Figure 12 plots the
execution time as a function of N of Strassen’s algorithm on
4 servers, both with and without inter-server data transfer. The
same conclusion that eliminating unnecessary data transport is
beneficial can be obtained as in Figure 11.

Figure 13 compares the execution time of Strassen’s algo-
rithm as a function of N on 1, 2, and 4 servers, with direct
inter-server data transfer enabled. It is somehow disappointing
to see that the overall performance in these cases is inversely
related to the number of servers used in the computation. This
is attributed to several important reasons. As discussed above,
in the case that a single server is used, intermediate results are
passed between tasks locally within the single server, resulting
in no real network communication. In contrast, when multiple
servers are used, some intermediate results have to be passed
among tasks running on different servers, resulting in real
network transfer of large chunks of data. Considering that the
client, the agent, and the servers are all connected via 100
Mb/s Ethernet, the overhead of network traffic can be relatively
huge in the cases. Therefore, the effect of parallel execution

 0

 20

 40

 60

 80

 100

 120

 140

 0 500 1000 1500 2000 2500

E
xe

cu
tio

n
tim

e
(s

ec
)

N

Without direct inter-server data transfer
With direct inter-server data transfer

Fig. 12: The execution time of Strassen’s algorithm as a
function of N on four servers, both with and without inter-
server data transfer.

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500

E
xe

cu
tio

n
tim

e
(s

ec
)

N

Single server
Two servers
Four servers

Fig. 13: The execution time of Strassen’s algorithm as a
function of N on 1, 2, and 4 servers with direct inter-server
data transfer enabled.

in improving the overall performance is largely offset by the
overhead of additional network traffic. In addition, the over-
head within the GridSolve system further reduces the weight
of the time purely spent on computation in the total execution
time, making it even less effective to try to reduce the compu-
tation time by parallel execution. Another important reason is
that the primitive algorithm for DAG scheduling and execution
is highly inefficient for complex workflows, as discussed in
Section IV. These three factors account for the disappointing
performance of parallel execution of of Strassen’s algorithm.
This also indicates that GridSolve request sequencing is not an
appropriate technique for implementing fine-grained parallel
applications, since the overhead of network communication

and remote service invocation in GridSolve can easily offset
the performance gain of parallel execution.

B. Experiments with Montage

This subsection presents a series of experiments with a
simple application of the Montage toolkit, which is introduced
in the following subsection. Unlike Strassen’s algorithm for
matrix multiplication, this is essentially an image processing
application and is more coarse-grained. In addition, this is
a typical computing-intensive application, in that it spends
most of its execution time on processing images. Therefore,
this application is expected to suffer less from the overhead
of network communication and remote service invocation in
GridSolve. The servers used in the experiments are Linux
boxes with Dual Intel Pentium 4 EM64T 3.4GHz processors
and 2.0 GB memory. The client, the agent, and the servers are
all connected via 100 Mb/s Ethernet.

C. A Simple Montage Application

We use the simple Montage application introduced in “Mon-
tage Tutorial: m101 Mosaic” [11], which is a step-by-step
tutorial on how to use the Montage toolkit to create a mosaic of
10 2MASS [12] Atlas images. This simple application gener-
ates both background-matched and uncorrected versions of the
mosaic [11]. The step-by-step instruction in the tutorial can be
easily converted to a simple workflow, which is illustrated by
the left graph in Figure 16. The rest of this section refers to this
workflow as the naive workflow. The detailed description of
each Montage module used in the application and the workflow
can be found in the documentation section of [7].

Fig. 14: The uncorrected version of the mosaic.

The output of the naive workflow, both the uncorrected
and background-matched versions of the mosaic, are given
in Figure 14 and 15, respectively. It can be seen that the
background-matched version of the mosaic has a much better
quality than the uncorrected version.

Fig. 15: The background-matched version of the mosaic.

mImgtbl_0

mProjExec_1

RAW

mImgtbl_2

RAW

mAdd_3

RAW

mOverlaps_3

RAW

mJPEG_4

RAW

mDiffExec_4

RAW

mFitExec_5

RAW

mBgModel_6

RAW

mBgExec_7

RAW

mAdd_8

RAW

mJPEG_9

RAW

mProjectPP_0

mImgtbl_1

RAW RAW RAW RAW RAWRAW RAW RAW RAW RAW

mAdd_2

RAW

mOverlaps_2

RAW

mJPEG_3

RAW

mDiffExec_3

RAW

mFitExec_4

RAW

mBgModel_5

RAW

mBgExec_6

RAW

mAdd_7

RAW

mJPEG_8

RAW

Fig. 16: The naive (left) and modified (right) workflows built
for the simple Montage application. In each workflow, the
left branch generates the uncorrected version of the mosaic,
whereas the right branch generates the background-matched
version of the mosaic. Both branches are highlighted by the
wrapping boxes.

D. Parallelization of Image Re-projection

The execution time of the naive workflow on a single
server is approximately 90 to 95 seconds, as shown below.
The most time-consuming operation in the naive workflow
is mProjExec, which is a batch operation that re-projects
a set of images to a common spatial scale and coordi-
nate system, by calling mProjectPP for each image in-
ternally. mProjectPP performs a plane-to-plane projection
on the single input image, and outputs the result as an-
other image. It is obvious that the calls to mProjectPP
are serialized in mProjExec. Thus, an obvious way to
improve the performance of the naive workflow is replacing
the single mProjExec operation with a set of indepen-
dent mProjectPP operations and parallelize the execution
of these independent image re-projection operations. In this
application, a single mProjExec operation is replaced with
10 independent mProjectPP operations, each of which re-
projects a single raw image. The workflow with this modifica-
tion is illustrated by the right graph in Figure 16. The rest of
this section refers to this workflow as the modified workflow.

E. Results and Analysis

 65

 70

 75

 80

 85

 90

 95

 100

 105

 1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
tim

e
(s

ec
)

Run

1 mProjExec
10 mProjectPP

Fig. 17: The execution time (sorted) on a single server of the
best 10 of 20 runs of both the naive and modified workflows.

Figure 17 shows the execution time (sorted) on a single
server of the best 10 of 20 runs of both the naive and
modified workflows. It can be seen that the performance of
the modified workflow is significantly better than that of the
naive workflow. The reason is that the single server has two
processors as mentioned above, and therefore can execute two
mProjectPP operations simultaneously. This result demon-
strates the benefit of parallelizing the time-consuming image
re-projection operation by replacing the single mProjExec
with a set of independent mProjectPP operations. It is still
interesting to see whether using more than one server can
further speed up the execution. This is investigated by the fol-
lowing experiment. The next experiment is based on a smaller

workflow, which is the left branch of the modified workflow,
i.e., the smaller branch that produces the uncorrected version
of the mosaic. The reason for using a smaller workflow is that
we want to minimize the influence of the fluctuating execution
time of the right branch on the overall execution time. The
expectation that using more than one server can further speed
up the execution is demonstrated by Figure 18. The figure
shows the execution time (sorted) of the best 10 out of 20
runs of the left branch of the modified workflow on different
numbers of servers (1, 2, and 3). It is not surprising to see in

 30

 35

 40

 45

 50

 55

 1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n
tim

e
(s

ec
)

Run

Three servers
Two servers

Single server

Fig. 18: The execution time (sorted) of the best 10 of 20
runs of the left branch of the modified workflow on different
numbers of servers (1, 2, and 3).

the figure that the performance is better as more servers are
used to increase the degree of parallelization.

VII. CONCLUSIONS AND FUTURE WORK

GridSolve request sequencing is a technique developed for
users to build workflow applications for efficient problem
solving in GridSolve. The motivation of this research includes
the deficiencies of GridSolve in solving problems consisting of
a set of tasks that have data dependencies, and the limitations
of the request sequencing technique in NetSolve. GridSolve
request sequencing completely eliminates unnecessary data
transfer during the execution of tasks both on a single server
and on multiple servers. In addition, GridSolve request se-
quencing is capable of exploring the potential parallelism
among tasks in a workflow. The experiments discussed in
the paper promisingly demonstrate the benefit of eliminat-
ing unnecessary data transfer and exploring the potential
parallelism. Another important feature of GridSolve request
sequencing is that the analysis of dependencies among tasks in
a workflow is fully automated. With this feature, users are not
required to manually write scripts that specify the dependency
among tasks in a workflow. These features plus the easy-to-use
API make GridSolve request sequencing a powerful tool for
building workflow applications for efficient parallel problem
solving in GridSolve.

As mentioned in Section IV, the algorithm for workflow
scheduling and execution currently used in GridSolve request
sequencing is primitive, in that it does not take into considera-
tion the differences among tasks and does not overally consider
the mutual impact between task clustering and network com-
munication. We are planning to substitute a more advanced al-
gorithm for this primitive one. There is a large literature about
workflow scheduling in Grid computing environments, such as
[13], [14], [15], [16]. Additionally, we are currently working
on providing support for advanced workflow patterns such as
conditional branches and loops, as discussed in Section V.
The ultimate goal is to make GridSolve request sequencing a
easy-to-use yet powerful tool for workflow programming.

VIII. ACKNOWLEDGEMENT

This research made use of Montage, funded by the National
Aeronautics and Space Administration’s Earth Science Tech-
nology Office, Computation Technologies Project, under Co-
operative Agreement Number NCC5-626 between NASA and
the California Institute of Technology. Montage is maintained
by the NASA/IPAC Infrared Science Archive.

REFERENCES

[1] The GridSolve Project. http://icl.cs.utk.edu/gridsolve/.
[2] Keith Seymour, Hidemoto Nakada, Satoshi Matsuoka, Jack Dongarra,

Craig Lee, and Henri Casanova. Overview of gridrpc: A remote
procedure call api for grid computing. In GRID ’02: Proceedings of
the Third International Workshop on Grid Computing, pages 274–278,
London, UK, 2002. Springer-Verlag.

[3] The NetSolve Project. http://icl.cs.utk.edu/netsolve/.
[4] Dorian C. Arnold, Dieter Bachmann, and Jack Dongarra. Request

sequencing: Optimizing communication for the Grid. Lecture Notes
in Computer Science, 1900:1213–1222, 2001.

[5] Yusuke Tanimura, Hidemoto Nakada, Yoshio Tanaka, and Satoshi
Sekiguchi. Design and implementation of distributed task sequencing
on gridrpc. In CIT ’06: Proceedings of the Sixth IEEE International
Conference on Computer and Information Technology (CIT’06), page 67,
Washington, DC, USA, 2006. IEEE Computer Society.

[6] Micah Beck and Terry Moore. The Internet2 Distributed Storage
Infrastructure project: an architecture for Internet content channels.
Computer Networks and ISDN Systems, 30(22–23):2141–2148, 1998.

[7] The Montage Project. http://montage.ipac.caltech.edu/.
[8] G. B. Berriman, E. Deelman, J. C. Good, J. C. Jacob, D. S. Katz,

C. Kesselman, A. C. Laity, T. A. Prince, G. Singh, and M.-H. Su.
Montage: a grid-enabled engine for delivering custom science-grade
mosaics on demand. In P. J. Quinn and A. Bridger, editors, Optimiz-
ing Scientific Return for Astronomy through Information Technologies.
Edited by Quinn, Peter J.; Bridger, Alan. Proceedings of the SPIE,
Volume 5493, pp. 221-232 (2004)., volume 5493 of Presented at the
Society of Photo-Optical Instrumentation Engineers (SPIE) Conference,
pages 221–232, September 2004.

[9] Laity A. C. Good J. C. Jacob J. C. Katz D. S. Deelman E. Singh G.
Su M.-H. Prince T. A. Berriman, G. B. Montage: The architecture
and scientific applications of a national virtual observatory service
for computing astronomical image mosaics. In Proceedings of Earth
Sciences Technology Conference, 2006.

[10] Fengguang Song, Jack Dongarra, and Shirley Moore. Experiments
with strassen’s algorithm: from sequential to parallel. In Parallel and
Distributed Computing and Systems 2006 (PDCS06), Dallas, Texas,
2006.

[11] Montage Tutorial: m101 Mosaic. http://montage.ipac.caltech.edu/docs/
m101tutorial.html.

[12] The 2MASS Project. http://www.ipac.caltech.edu/2mass.

[13] Anirban Mandal, K. Kennedy, C. Koelbel, G. Marin, J. Mellor-Crummey,
B. Liu, and L. Johnsson. Scheduling strategies for mapping application
workflows onto the grid. In HPDC ’05: Proceedings of the High
Performance Distributed Computing, 2005. HPDC-14. Proceedings.
14th IEEE International Symposium, pages 125–134, Washington, DC,
USA, 2005. IEEE Computer Society.

[14] Gurmeet Singh, Mei-Hui Su, Karan Vahi, Ewa Deelman, Bruce Berri-
man, John Good, Daniel S. Katz, and Gaurang Mehta. Workflow task
clustering for best effort systems with pegasus. In MG ’08: Proceedings
of the 15th ACM Mardi Gras conference, pages 1–8, New York, NY,
USA, 2008. ACM.

[15] Gurmeet Singh, Carl Kesselman, and Ewa Deelman. Optimizing grid-
based workflow execution. Journal of Grid Computing, 3(3-4):201–219,
September 2005.

[16] Rubing Duan, R. Prodan, and T. Fahringer. Run-time optimisation of
grid workflow applications. Grid Computing, 7th IEEE/ACM Interna-
tional Conference on, pages 33–40, 28-29 Sept. 2006.

