ReST Packager's Guide

An introduction to creating ReST packages.

Jeff M Larkin, Innovative Computing Laboratory, UT <l ar ki n@s. ut k. edu>
Eric T Meek, Innovative Computing Laboratory, UT <neek@s. ut k. edu>

ReST Packager's Guide: An introduction to creating ReST pack-
ages.
by Jeff M Larkin and Eric T Meek

Abstract

This document provides information for those interested in creating a ReST Installer package for a piece of soft-
ware. It provides information detailing the process of package creation. It is assumed that the reader has at least a

basic knowledge of the ReST project.

Table of Contents

1. REST PaCKAgE BASICSuuiiiiiiiieeiii ettt ettt e ettt e e et eaaas 1
ThE PaCKagE SIIUCKUIE ... ettt e ettt e et e e et e e e e e e eraa s 1

The Package XIML ... et e et e et e et e e e e aean s 1

2. Writing the package XIML ... e e e e e e e e e ees 2
L 0o 2
WIHEING thE XML e e e e e e e e e e e e e e et e e e et e e et s e e an e e anneaennaaes 2
TREHEAES . .eeeei e 2
THE B SIS ...ttt ettt 3

(0000100F=TaTo @ o] [o] PP UPTN 3

ALCHIONS .t ettt et et e e aaas 4
(0001110 8= 1 o] 0 1 =1 = 4

3. Creating and using the Package fillEcive i iii e 6
R oo o 11 o) PP SPRPN 7
I. PaCkage XML EIBIMENLS ittt ettt e ettt e et et e e e e et e e e e et e e e eena e eeees 8
= ol B 0] o PSP 9

= ol B 0] 1= PP 10

o= Tod o | o 10 1 o [0 o Y PP 11

o= 1ol o | o 10 1 Yo [T 2= Vo = PP 12
DS 8 e e 13

(od Y=o 143U [12 1 P 14

(o30] 1012 1o o [P RPP 15
(o0 .0 T I 1= L A I 0 1 17

(o3 13 0] =Y S o 1 0 T 18
(o3 o) ST | = T 19
CONT T QU AL T ON Lottt e et e et e eenans 21

[0 T 22

(o 1T o g I o] A o] o PP 23
EXPl Or er at tri DUL ES oo e 24

L TCT= o [S SPPPPN 25

o3 o TSP 27

[T PRSP 28

[0 1V PR 29
FNST AL T AL T 0N e et ettt et ea 30

I NSt Al | @rattri DUL ES oo e 31

o =T 0 = = U SPPTPN 32

I o =T 0 £ =T ST 33

(g0 TR Ao T = A A G T o 101 A=Y PSP 34
= PPN 35

(o] o] B o] o KPP 36

= Lo > Yo = N 38

= T = Vo = L PP 39

= T = Vo = PP 40
[OF=Tod ¢ T ==Y o PSPPSRI 41

1= L0 o] o E T PP UP PP PPPPPTTRUPPIN 42

L O = TP PRSPPI 43
=0 L= N 44

O =Y o = U= L S o] o TP 45

U e 46

LS I S TP EPPRPPR 47

(UL S A= = O o o PR 48

O T UPTRPPTRN 49

(V=T =T o o PSPPI 50

[1. COMPIELE PaCKagE XML . .eeniiiiiiii e e e e e e e e e e e et e e et e e e e et e e et e e eaneeeees 51

ReST Packager's Guide

Complete Package XML Example

List of Examples

N = o= o [o 1= [PP 2
N I 1= G TR (= P 3
2.3, COMMANG OPLIONS ...t eeeeii ettt ettt ettt et et e et et et e e e e et e e e e et e e e e ab e e e et e e e aaa s 3
2.4, PaCKAGJE ACHIONS ...ttt et e ettt et e e e e aa s 4
2.5. SUD Configuration FIlE e et ettt e e e e e e e 5
2.6. Configuration FIlE XIMLuiii e e e e e e e e e 5
3.1. RUNNING the REST PaCKagEr.ucvvieiiii e e e e e e e e e e e e e aane e 6
3.2, INStAlING @PACKAGE .. cevuieiti ittt e e e e e 6
9. ACHION EXBIMPIE ...ttt 9
10, ACHONS EXBMPIE ...ttt ettt e et e e et et e e e e et eeeeba e aee 10
11, Command EXAMPIE ... ettt e a e 16
12. Configfile XIML EXAMPIE ...oviiiiei et e e e e e e e e e e e e e e ees 19
13. Sample Configuration FilE@ SHUDuoiii e e 20
14. Package Header EXAMPIEiiii e e 25
15, LICENSE EXBMPIE ...ttt e e et ettt e et e e e e e e e 32
16. LiCeNSRUIT EXAMPIE ...ttt ettt e ettt e et et e e et e e e e eebe e eee 33
17. Predef and Def EXAMPIEt e 44
18. EXampPle PaCkage XIMILuir ettt e e e e 52

Vi

Chapter 1. ReST Package Basics

Although used primarily by the ReST Installer, ReST packages are the means by which the ReST Ap-
plication Suite is customized for individual pieces of software. The ReST package contains the software
and metadata needed by the Installer to install software on remote machines. The package metadata is
used by the Installer and Explorer to maintain the state of installed software and in future versions of
ReST it will contain information needed to customize the Monitor to work with the installed packages.
In order to produce a well-written package it is important to understand what is contained in the package
and what conventions are expected by the ReST Suite.

The Package Structure

A ReST package is essentially a ZIP/JAR file containing two special files, a package XML file and a
checksum file. The package XML file, name packagexml inside the package, contains both basic
metadata about the package and instructions on how to install the package from source or pre-compiled
binaries. The checksum file, at this time must be created by the ReSTPackager program contains check-
sums of each file within the package and is must pass before the Installer will run the package. Details
about the package sources are not necessary, since they could be any file that is pertenant to the software
being installed. Details about writing the package XML, including documentation of each XML tag, and
creating the package file appear later in this document.

The Package XML

The package XML is what makes a ReST package special. It includes metadata pertaining to the soft-
ware package, instructions on installing the contained software, and a list of actions that can be per-
formed once the software has been installed. The XML file can be thought of as an enhanced shell
script, since it contains alist of commands that are run sequentially to install the package. It is more than
asimple shell script, however, in that packagers are able to define options that can be customized by the
end user from the ReST Installer.

Commands in the package XML are broken into six steps, which simply provide a logical grouping of
the commands that are run. The six steps, in order, are Preparation, Configuration, Compilation, Install-
ation, Complettion, and Uninstallation, with the last actually being optional. Commands that need to be
run first, before anything else can happen, such as extracting archives or creating directories should be
placed in the perparation step. Package sources will be sent to the remote machine and package director-
ies will be created prior to this step. Anything pertaining to configuring the software, such as running a
configure script should be placed in the configuration step. Configuration files included in the package
will be sent to the remote machine between these first two steps. Commands related to compiling and in-
stalling the package should be placed in the next two steps respectively. During the completion step the
packager should clean up the build area however possible, such as deleting unneeded sources that re-
main. Lastly, if a packager would like to provide a means for automatically uninstalling their software,
commands pertaining to this should be placed in the uninstallation step. Each step is essentially equal,
but provides a logical way of organizing the package. Packagers are encouraged to group their com-
mands using these logical step. Every step except the uninstallation step must be in the package XML,
but may be empty if not needed.

Chapter 2. Writing the package XML

Future versions of the ReST suite may contain a graphical application for creating package XML files,
but at the current time the file must be written by hand. For this reason it is crucia for the packager to
gain an understanding of the package XML file to create a working package. Package XML files can be
written in any text editor so long as they obey the rules defined for ReST XML. A definition of each
XML tag isgiven in the reference sections at the end of this document.

Planning

The planning step is the most important part in successfully creating a working package. Before writing
the XML create a step-by-step list of how the softwareisinstalled. If possible, walk through the installa-
tion in a clean /bin/bash environment, since this will more realistically reflect the environment in which
ReST will install the software. Once this list has been written, place a mark next to each command that
would not need to be run on every machine in an homogeneous environment with a shared filesystem.
Now note command options that should be offered for each command, for example ./configure -
-with-foo. Try installing the software by walking through this list one command at a time; if it works
without problem then fewer problems are likely to occur when the package is written.

Writing the XML

The sections below will provide an overview of how to write a package XML file. For more detailed in-
formation about the XML tags, including advanced attributes, please see the reference section at the end
of this document.

The Header

The package header contains metadata about the package that will be shared among all of the ReST ap-
plications. This metadata includes the name of the software, the author and version of the software, and
information about the packager. Below is a basic package header.

Example 2.1. Package Header

<header >
<titl e>Exanpl e Package</title>
<base>exanpl e</ base>
<ver si on>1. 0</ ver si on>
<descri pti on>Thi s package i s an exanpl e ReST package. </ descri pti on>
<uri>http://icl.cs.utk.edu/rest/</uri>
<licenseuri forceaccept="true">http://exanple.comlicense.txt</licenseuri>
<packager >
<nane>Joe Devl oper </ name>
<uri>mai | t o: devel oper @xanpl e. conx/ uri >
</ packager >
</ header >

There are several important tags in the above example. Thet i t | e setsthe package title that will appear
in the Installer. If the title is longer than 25 characters, a second, shorter title may be set with ther ol e
attribute set to short. If no short title is provided and the title is longer than 25 characters, then in space-
constrained parts of the application the long title will be truncated at 25 characters. The base element
gives away of grouping packages that should be installed in a similar area. For example, packages for
the LAPACK and BLAS libraries have been written with a base of lib so that they, and other libraries,
will be easy to find and use. The base should always be set to a value that will be valid for the filesys-

Writing the package XML

tem on all target machines.

The contents of the ver si on tag should be the version on the software in the package and not the ver-
sion of the package itself. The version of the package can be given as an attribute of the package root
element if desired. Additional tags exist for the package header, including options for editing configura-
tion files, added files to the package, and defining actions that can be performed once the package has
been installed. All of these tags are defined with examples in a reference section at the end of this docu-
ment.

The 6 Steps

Asexplained earlier, all commands for installing and uninstalling a package are organized into six logic-
al steps: prepar ati on, confi guration, conpilation,installation,conpletion,and
uni nstal | ati on. Theuni nstal | ati on step is optional, but recommended. These steps are es-
sentially equal, except that configuration files are sent to the remote machine between the pr epar a-
tion and confi gurati on steps. It is highly recommended that packagers take advantage of the six
steps for logically grouping the package commands. Future version of the the ReST suite may contain
optimizations or changes in the handeling of these steps and forward compatibility is best ensured by us-
ing these steps. Below is an exampl e of the six steps appearing in a package.

Example 2.2. The 6 Steps

<pr epar at i on>
<command val ue="tar -xf exanple.tar">
<conmand val ue="cd exanpl e/">
</ prepar ati on>
<confi guration>
<command val ue="./configure --prefix=$PWD"'>
</ configuration>
<conpi | ati on>
<conmand val ue="make al | ">
</ conpi | ati on>
<installation>
<command val ue="nake install">
</installation>
<conpl eti on>
<conmand val ue="nmake cl ean">
<command value="cd ..; /bin/rm-f exanple.tar">
</ conpl eti on>
<uni nstal | ati on>
<command val ue="cd exanpl e">
<command val ue="make uni nstall">
<conmand val ue="cd ..; /bin/rm-rf exanple/">
</uninstal |l ati on>

Command Options

Some commands may need to be configured by the user before they are run on the remote machine. For
that reason the ReST XML alows command tags to contain opt i on tags. The opt i on tags define
command-line arguments for a given command and can be configured by end users. A good example of
a command that will likely contain options is the . / confi gur e script, which is included in many
source distributions. It is common for this command to have many different command line options for
properly configuring the build process. Below is an example of the . / conf i gur e command with op-
tions.

Example 2.3. Command Options

<command val ue="./configure" grouped="true">

Writing the package XML

<option nane="foo" type="text" defaul t="/usr/local/lib/libfoo.a"

trueval ue="--w th-1i bfoo="/>

<option nane="bar" type="bool ean" default="fal se"
trueval ue="--w th-libbar" fal seval ue="--w thout-I|ibbar"/>

<option nane="ouputl evel " type="choi ce" choi ces="debug, vi ew, none" defaul t ="none"
trueval ue="--with-outputlevel "/>

</ command>

The above example defines three possible options for the . / conf i gur e command. All of the options
have four common attributes: name, type, default, and truevalue. The name attribute is exactly what
would be expected, the name that the user will see when configuring this option. The type attribute may
be either t ext , bool ean, or choi ce. The default attribute defines what the value should be by de-
fault, which is required for installation in smple mode. Finally the truevalue attribute defines what is ap-
pended to the command if the option is enabled or if aoption of type boolean is selected. For example, if
option foo is enabled and the default value is left untouched the resulting string -
-wi th-1ibfoo=/usr/local/lib/libfoo.a will beappended to the command. Packagers are
encouraged to expose al possible command-line options to the users through ReST as the packager is
more knowledgeable about the software included than the user. Additional information about the op-
t i on tag can be found in the reference section at the end of this document.

Actions

ReST actions are commands that exist on systems after a software package has been installed. For a
piece of server software, for example, this could include starting, stopping, and restarting the server. An
action is simply a wrapper around one or more comrand tags, much like each of the six steps de-
scribed above, except that the act i on tag requires a name for the action. Actions can be run by the
ReST Installer immediately after installation is complete or by the ReST Exploror at any time after
package installation. Below is an example of package actions.

Example 2.4. Package Actions

<actions>
<action nane="Start Server" tooltip="Start a server.">
<command val ue="/bi n/bash ./start_server.sh" statusmsg="Starting Server"
errornsg="Failed to start server."/>

</ action>
<action name="Kill Server" tooltip="Kill a server.">
<command val ue="/bi n/bash ./kill _server.sh" statusnsg="Killing Server"
errornsg="Failed to kill server."/>
</ action>
<action nane="Restart Server" tooltip="Restart a server.">
<command val ue="/bi n/bash ./kill_server.sh" statusnsg="Killing Server"
errornsg="Failed to kill server."/>

<command val ue="/bi n/bash ./start_server.sh" statusnsg="Starting Server"
errornsg="Failed to start server."/>
</ action>
</ actions>

Configuration Files

Many software packages have configuration files that must be edited before the software can be used.
To the developer of a software package writing the configuration files may be trivial, but this is often
not the case for the end user. For this reason, the ReST Installer may be used to edit configuration files
for the software package. The package must include a stub configuration file with a series of tokens to
substitute. Each token appears with a % character on either side of the one-word token, such as
%token%. With a stub file created the packager must define the substitutions for this file in the package
XML. Below is an example stub file and matching package XML.

Writing the package XML

Example 2.5. Stub Configuration File

FOO=%sub1%

Example 2.6. Configuration File XML

<configfil e packagefil e="exanpl e. cfg"
renot ef i | e="exanpl e/ exanpl e. cfg"
description="Exanpl e Configuration File">
<sub nane="subl" description="First Substitution"
defaul t="My First Substitution" type="string"/>
</configfile>

In the above example just one substitution is made, but ReST will handle as many substitutions as are
needed. Three types of substitions exist, st ri ng (no more than one line of text), t ext (multiple lines
of text), and choi ce (a defined set of choices, much like available for command options). The con-

figfil e tag has three attributes: packagefile (the location of the stub file in the package), remotefile
(where the resulting configuration file should be placed on the remote machine), and description (a
simple description for the user). Addtional information about the confi gf i | e and sub tags, includ-
ing additional attributes to each, can be found in the reference section at the end of this document.

Chapter 3. Creating and using the
package file

Once the package XML has been written, stub configuration files have been created and source files
have been gathered, it is time to combine all of the files into a ReST package. Part of the ReST suite is
the ReST Packager utility. This utility combines all of the necessary files into one package for easy dis-
tribution. Below is an example of how the ReST Packager is used.

Example 3.1. Running the ReST Packager .

> java -jar ReSTPackager.jar -X exanpl epackage. xm -f exanple.rsp filel file2 stub.cfg

In the above example, the user has run the ReST Packager, which isincluded in the ReST suite to create
a package named examplersp. The - X argument tells the ReST Packager to use exanpl epack-
age. xm as the package XML file for this package. The - f argument tells the packager the name of
thefile to create. The remaining arguments tell the Packager which files to include. Every file that is de-
clared in the package.xml must be included in the Packager arguments. The resulting file can be distrib-
uted by whatever means desired and used with the ReST Installer.

Once the package file is created, it simply needs to be installed from the ReST Installer. To install the
package, run the ReST Installer with the name of the package as an argument. The package can be local

or placed on a web server, athough larger packages will run more quickly if they are local. Here is an
example of our package being used by the ReST Installer.

Example 3.2. Installing a Package

> java -jar ReSTlnstaller.jar exanple.rsp

Chapter 4. Conclusions

The ReST package specification was designed to give packagers a flexible system for creating an applic-
ation installer for their software. This document should have given you the basic knowledge needed to
build a package for your software. More detailed information about the ReST package XML, including a

full example can be found in the reference pages of this document. For questions about ReST and to
provide feedback or suggestions, please feel encouraged to e-mail the authors of this document.

Package XML Elements

Name

act i on -- Commands that can be run after a package has been installed.

Description

Once a package has been installed there may be some commands that a user will be able to run. ReST
calls these commands "actions’ and allows them to be run in the Installer immediately after an installa-
tion or by the Explorer at any time after the package has been installed.

Atrributes

e name (required) - How the action should be known
* tooltip (required) - Thiswill appear as atooltip in the ReST applications

e id (optiona) - A uniqueid for this action within the package. Thisis only needed if there are depend-
encies between actions.

» depends (optional) - A comma-separated list of action ids on which this action depends.

Parents

The following elements are valid parents of act i on: act i ons.

Children

The following elements are children of act i on: command.

Example

Example 9. Action Example

<action nane="Start Server" tooltip="Start a server.">
<command val ue="/bi n/bash ./start_server.sh" statusnsg="Starting Server"
errornsg="Failed to start server."/>
</ action>

Name

act i ons -- Wrapper element for multiple action elements.

Description

This element appearsin the ReST package header and contains 1 or more act i on elements.

Parents

The following elements are valid parents of act i ons: header .

Children

The following elements are children of act i ons: acti on.

Example

Example 10. Actions Example

<actions>
<action nane="Start Server" tooltip="Start a server.">
<command val ue="/bi n/ bash ./start_server.sh" statusnsg="Starting Server"
errornsg="Failed to start server."/>

</ action>
<action nanme="Kill Server" tooltip="Kill a server.">
<command val ue="/bi n/bash ./kill_server.sh" statusnsg="Killing Server"

errornsg="Failed to kill server."/>
</ actions>

10

Name

backgr oundcol or -- Declare the background color that should be used in the ReST applications
when referencing this package.
Description

If thebackgr oundcol or element appearsin an application's attributes then the declared color will be
used instead of the default background color for applications referencing this package. The color should
be given in hex notation as would be given in HTML code.

Parents

The following elements are valid parents of backgr oundcol or: expl orerattri butes, i n-
stallerattributes,monitorattributes.

Children

The following elements are children of backgr oundcol or : No Children.

11

Name

backgr oundi mage -- Declare the background image that should be used in the ReST applications
when referencing this package.
Description

If the backgr oundi mage element appears in an application's attributes then the given image will ap-
pear as a watermark in the background of ReST applications as they refernce this package. The image
could be included in the ReST package or reference an image that appears in aweb space.

Parents

The following elements are valid parents of backgr oundi nage: expl orerattri butes, i n-
stallerattributes,monitorattributes.

Children

The following elements are children of backgr oundi mage: No Children.

12

Name

base -- Givesthe base directory for this package.

Description
By defining a base directory for a package, multiple packages can be organized to share a common

space. This is useful for organizing libraries, which can be given a base of libs, or software packages
that include several plugable or optional components that may be installed at alater time.

Parents

The following elements are valid parents of base: header .

Children

The following elements are children of nane: No Children.

13

Name

checksunuri -- Givethe uri to afile that contains the checksum for this package.

Description
When a package is created with the ReST packager a checksum is printed, which can be placed in afile
on a webspace. This element points to such a file to give the ReST application the ability to verify the
package before using it. This behavior is optional. ReST packages already contain checksums of the

files contained, which are verified when a package is used; package checksums are in addition to this be-
havior. At the current time checksunuri is not supported, but will be added to future versions of

ReST.

Attributes

» forcechecksum - If set to true, ReST applications will not accept a package that does to match the
given checksum. If set to false, the application will ssimply warn that the checksum does not match.
If forcechecksum does not appear, false is assumed.

Parents

The following elements are valid parents of chucksunuri : header .

Children

The following elements are children of chucksurrur i : No Children.

14

N

ame

command -- Run acommand on the remote system.

Descrip

tion

The comrand tag declares a single command to be run on the remote system. By default this command
isrunina/ bi n/ bash environment and commands should be written with thisin mind. A command
contains 0 or more opt i on tags, allowing the command to be configured from the ReST application's

GU

Attribut

Parents

SN)

value (required) - The command to be run.

shell (optional) - The shell in which to run the command. At thistime shel | is not supported, but
support will be added in future versions of ReST.

required (optional) - If the user should be given the option to not run this command, r equi r ed
should be set to false. If r equi r ed is not given, the command will be run.

grouped (optional) - If running the command on one machine in a given logical group is sufficient,
set gr ouped="true", if grouped is not given or gr ouped=""f al se" the command will be
run on every machine in the logical group.

id (optional) - A unique id given to this command, which is used if command dependencies exist.
Dependencies are not supported at thistime.

depends (optional) - A comma-separated list of ids on which this command depends. Dependencies
are not supported at thistime.

errormsg (optional) - A short message that should be displayed as the status of a given location if the
command fails.

statusmsg (optional) - A short message that will be displayed as the status of a given location as it
runs a command.

description (optional) - A description of the command, used to help users understand the commands
asthey are configured.

forceConfigure (optional) - By default command options are only configured in Advanced Mode for
a given ReST application. However, if a given command must be configured, set f or ceConf i g-
ure="true".

The following elements are valid parents of command: acti on, conpi | ati on, conpl eti on,
configuration,installation,preparation,uninstallation.

Children

15

conmand

The following elements are children of conmand: opt i on.

Example

Example 11. Command Example

<command val ue="nake" grouped="true">
<option type="bool ean" trueval ue="standard" nanme="Standard" enabl ed="true"/>
<option type="bool ean" trueval ue="all" name="All"/>
<option type="bool ean" trueval ue="server" nanme="Server"/>
<option type="bool ean" trueval ue="agent" nane="Agent"/>
<option type="bool ean" trueval ue="C"' name="C'/>
<option type="bool ean" trueval ue="Fortran" name="Fortran"/>
<option type="bool ean" trueval ue="matl ab" name="Matl| ab"/>
<option type="bool ean" trueval ue="octave" nane="Cctave"/>
<option type="bool ean" trueval ue="mat hemati ca" nane="Mat hemati ca"/>
<option type="bool ean" trueval ue="gridrpc" name="G i dRPC'/ >
<option type="bool ean" trueval ue="pdfgui" name="PDF Gui"/>
<option type="bool ean" trueval ue="t ool s" nane="Tool s"/>
<option type="bool ean" trueval ue="w appers" nanme="W appers"/>
<option type="bool ean" trueval ue="tester" nane="Tester"/>
<option type="bool ean" trueval ue="regress" nane="Regression Test Suite"/>
<option type="bool ean" trueval ue="cl ean" nane="C ean"/>
<option type="bool ean" trueval ue="confi gcl ean" nane="Confi gcl ean"/>
<option type="bool ean" trueval ue="CLEAN' nane="Cl ean every architecture"/>
</ command>

16

Name

conpi | ati on -- The 3rd of the 5 steps to installing a package.

Description

Thisisthe 3rd of the 5 steps to installing a package, occuring after configuration and before installation.
Commands that relate to compiling the contained software should be done in this step.

Parents

The following elements are valid parents of conpi | at i on: package.

Children

The following elements are children of conpi | at i on: comrand.

17

Name

conpl eti on -- The 5th of the 5 steps to installing a package.

Description

Thisis the 5th of the 5 steps to installing a package, occuring after installation. Commands that must be
run after a package is installed or relate to cleaning up the build area, such as removing unneeded files
should be placed in this step.

Parents

The following elements are valid parents of conpl et i on: package.

Children

The following elements are children of conpl et i on: conmand.

18

Name

confi gfi |l e -- Declare afile that must be configured by the user.

Description

A package may contain configuration files for the packaged software. These files will be configured
from the GUI by the user. The confi gf i | e will contain several sub tags, which define tokens that
will bereplaced in thefile.

Attributes

» packagefile (required) - The name of thefile asit is contained in the package.

» remotefile (required) - The name of the file asit should be on the remote system. This can be a relat-
ive pathname (ex. src/file.conf).

» description (optional) - A description of the file's purpose or conventions.

» forceConfigure (optional) - If f or ceConfi gure="true" the user will be required to edit the
file, even if they are not in Advanced Mode in the ReST application. If f or ceCongf i gur e is not
declated or f or ceConfi gure="f al se" thedefaults will be used for all substitutions.

Parents

The following elements are valid parents of conf i gf i | e: header .

Children

The following elements are children of confi gfi | e: sub.

Example

Example 12. Configfile XML Example

<configfile packagefil e="server_config"
renot ef i | e=" Net Sol ve- 2. 0/ server _confi g"
descri pti on="Net Sol ve Server Configuration File">
<sub nanme="nproc" description="Nunber of processors"
defaul t="2" type="string"/>
<sub nanme="agent" descripti on="The Net Sol ve Agent host nane"
def aul t =" net sol ve. cs. ut k. edu" type="string"/>
<sub nanme="scratch" description="Scratch Directory"
defaul t="/tnp/" type="string"/>
<sub nanme="npi hosts" descri pti on="Nunber of MPl Hosts"
defaul t="4" type="string"/>
<sub nanme="wor kl oadmax" descri pti on="Maxi mum al | owabl e wor kl oad"
defaul t="-1" type="string"/>
</configfile>

19

configfile

Example 13. Sample Configuration File Stub

@PRCC: %mpr oc%

@AGENT: Yagent %

@\ORKLOADMAX: %nwor kl oadnmax%
@CRATCH: %scr at ch%

@Pl HOSTS . / MPI machi nes %pi host s%

20

Name

confi gurati on -- The 2nd of the 5 steps to installing a package.

Description
Thisisthe 2nd of the 5 steps to installing a package, occuring after preparation and before compilation.

Commands that relate to configuration for compilation (such as running conf i gur e scripts) should be
donein this step. Configuration files are sent to the remote location immediately before this step.

Parents

The following elements are valid parents of conf i gur at i on: package.

Children

The following elements are children of conf i gur ati on: cormand.

21

Name

def -- Defines a substitution or command optioninapr e set.

Description

This element is used to define a command option (if type="option™) or substitution (if type="sub") with-
inapr e set. See pr edef s for ausage example.

Attributes

» type (required) - Either option or sub, defining whether this definition is for a command option or
configuration substitution.

» ref (required) - Theid of the option or substitution to which this definition refers.

Parents

The following elements are valid parents of def : pr e.

Children

The following elements are children of def : No Children.

22

Name

descri pti on -- Provide adescription of the package.

Description

A description of the software included in this package. This description should give users an understand-
ing of the software's purpose.

Parents

The following elements are valid parents of descri pti on: header .

Children

The following elements are children of descri pt i on: No Children.

23

Name

expl orerattributes -- Contains attributes to customize the look and feel of the ReST Explorer
for a specific package.

Description

Contains attributes to customize the look and feel of the ReST Explorer for a specific package.

Parents

The following elements are valid parents of expl orerat tri but es: header.

Children

The following elements are children of expl orerattri butes: backgroundcol or, back-
gr oundi nage, i con.

24

Name

header -- Provide basic metadata about the package.

Description

Thisitem contains the package metadata.

Parents

The following elements are valid parents of header : package.

Children

The following elements are children of header: action, actions, checksunuri,
configfile, description, explorerattributes, info,infouri,|icense,licen-
seuri, nonitorattributes, name, packagedi r, packager, packagesrc, pat ch, pre-
defs,titl e, packager, packager.

Example

Example 14. Package Header Example

<header >
<nane>Net Sol ve</ nane>
<title>NetSolve Installer</title>
<ver si on>2. 0</ ver si on>
<descri pti on>Net Sol ve is a grid mi ddl eware package</descri pti on>
<uri>http://icl.cs.utk.edu/ netsolve/</uri>

<l-- Basic information about the packager -->
<packager >
<nane>Jeff M Lar ki n</ name>
<uri>mailto:larki n@s. utk. edu</uri>
</ packager >

<actions>
<action nane="Start Server" tooltip="Start a NetSol ve server.">
<command val ue="/bi n/bash ./start_server.sh" statusmsg="Starting Server"
errornsg="Failed to start server."/>

</ action>
<action name="Kill Server" tooltip="Kill a NetSolve server.">
<command val ue="/bi n/bash ./kill _server.sh" statusnsg="Killing Server"
errornsg="Failed to kill server."/>
</ action>
</ action>

</ acti ons>

<configfile packagefil e="server_config"
renot ef i | e=" Net Sol ve- 2. 0/ server _confi g"
descri pti on="Net Sol ve Server Configuration File">
<sub nanme="nproc" description="Nunber of processors"
defaul t="2" type="string"/>
<sub nanme="agent" descripti on="The Net Sol ve Agent host nane"
def aul t =" net sol ve. cs. ut k. edu" type="string"/>
<sub nanme="scratch" description="Scratch Directory"
defaul t="/tnp/" type="string"/>
<sub nanme="npi hosts" descri pti on="Nunber of MPl Hosts"
defaul t="4" type="string"/>
<sub nane="wor k|l oadmax" descri pti on="Maxi mum al | owabl e wor kl oad"
defaul t="-1" type="string"/>

25

header

</configfile>

<!-- Package source(s). W can do both renpte and local files -->
<packagesr c>Net Sol ve- 2. 0. t gz</ packagesr c>
<packagesr c>confi g. guess</ packagesr c>
<packagesrc>start_server. sh</ packagesrc>
<packagesrc>ki || _server. sh</ packagesrc>

<installerattributes>
<backgr oundi mage>htt p: / / wawv. cs. ut k. edu/ ~neek/ i cl / GSAP/ net sol ve_bg. png</ backgr oundi mage>
<icon>http://icl.cs.utk.edu/favicon.ico</icon>
</installerattributes>
</ header >

26

Name

i con -- Defines the icon to appear in the titlebar of a ReST application when referencing this ReST
package.
Description

If i conisgiveninexplorerattributes,installerattributes, monitorattributes
and icon will appear in thetitlebar of the related ReST application when referencing this package.

Parents

The following elements are valid parents of i con: expl orerattri butes,installerattrib-
utes,nonitorattributes.

Children

The following elements are children of i con: No Children.

27

Name

i nf o -- Give additional information about the software contained in this package.

Description

This is an optional tag to give additional information about the software contained in the package. The
tag could be used to display the contents of a README file, for instance.

Parents

The following elements are valid parents of i nf o: header .

Children

The following elements are children of i nf o: No Children.

28

Name

i nfouri -- Givealink to atext file containing additional information about the software contained in
this package.
Description

Thisis an optional tag to give additional information about the software contained in the package. The
link should point to atext file located on aweb server. The tag could be used to display the contents of a
README file, for instance.

Parents

The following elements are valid parents of i nf our i : header .

Children

The following elements are children of i nf our i : No Children.

29

Name

i nstal | ati on -- The 4th of the 5 stepsto installing a package.

Description

Thisis the 4th of the 5 steps to installing a package, occuring after compilation and before completion.
Commands that relate to installing the software in its final location should be placed in this step.

Parents

The following elements are valid parents of i nst al | at i on: package.

Children

The following elements are children of i nst al | ati on: comrand.

30

Name

install erattri butes -- Contains attributes to customize the look and feel of the ReST Installer
for a specific package.

Description

Contains attributes to customize the look and feel of the ReST Installer for a specific package.

Parents

The following elements are valid parentsof i nstal | erattri but es: header.

Children

The following elements are children of i nstal | erattri butes: backgroundcol or, back-
gr oundi nage, i con.

31

Name

I i cense -- Define the licensing terms of the included software.

Description

License and licenseuri give the packager a way to provide licensing information about the enclosed soft-
ware. License elements should contain the text of the license while Licenseuri is simply alink to a text
file containing the license. If Licenseuri is used, the ReST application will retrieve the license file and
display its contents. Both elements are optional.

Example

Example 15. License Example

<license forceaccept="true">This is the license that you nust accept</I|icense>

Parents

The following elements are valid parentsof | i cense: header .

Children

The following elements are children of | i cense: No Children.

32

Name

i censeuri -- Definethelicensing terms of the included software.

Description

License and licenseuri give the packager a way to provide licensing information about the enclosed soft-
ware. License elements should contain the text of the license while Licenseuri is simply alink to a text
file containing the license. If Licenseuri is used, the ReST application will retrieve the license file and
display its contents. Both elements are optional.

Example

Example 16. Licenseuri Example

<licenseuri forceaccept="true">http://exanple.comlicense.txt</l|icense>

Parents

The following elements are valid parentsof | i censeur i : header.

Children

The following elements are children of | i censeur i : No Children.

33

Name

noni t orattri but es -- Contains attributes to customize the look and feel of the ReST Monitor for a
specific package.

Description

Contains attributes to customize the look and feel of the ReST Monitor for a specific package.

Parents

The following elements are valid parents of noni t or at t ri but es: header .

Children

The following elements are children of nonitorattri butes: backgroundcol or, back-
gr oundi nage, i con.

Name

name -- Gives the name of the packager.

Description

The name tag is used to provide the name of the packager. It is a generic element that could be extended
for more uses in the future.

Parents

The following elements are valid parents of name: packager .

Children

The following elements are children of nane: No Children.

35

N

ame

opt i on -- Declares configurable options for acommand.

Descrip

tion

Some commands may be configurable through command-line options. Using one or more opt i on tags
within and command allows users to customize these options via the ReST GUI.

Attribut

Parents

€S

name (required) - The name to appear by the option during customization.

default (required) - The default value for this option. This is appended to the command after the true-
value (if typeis not boolean. This may be an empty string.

type (required) - What type of substitution is this? Valid types are string (one line of text), choice
(chosen from alist), boolean (true/false).

truevalue (required) - If type=boolean, this is the value to to append to the command. If type is not
boolean then this will be appended to the command before the value input from the user. This can be
an empty string.

falsevalue (required only if type=boolean) - The value to append if type is boolean and false is selec-
ted. This can be an empty string.

choices (required if type=choice) - A comma separated list of possbile choices for this option.

customChoice (optional) - If the type is choice and this attribute is set to true then the user may
choose from the list of choices or give their own value for this option. If this attribute is false or not
declared, the user is restricted to the given choices.

id (optional) - A unique id given to this option, which is used if option dependencies exist. Depend-
encies are not supported at thistime.

depends (optional) - A comma-separated list of ids on which this option depends. Dependencies are
not supported at thistime.

enabled (optional) - If true this option will be turned on by default. If false or missing this option will
be turned off by defaullt.

description (optional) - A description of what this option does to the command.

The following elements are valid parents of opt i on: comand.

Children

The following elements are children of opt i on: No Children.

36

option

Example

See commrand for an example of how to use options.

37

Name

package -- The ReST Package root element.

Description

Thisisthe root element for a ReST package.

Attributes

» version (optional) - The version of this package. This does not necessarily match the version of the
software contained in the package.

Parents

The following elements are valid parents of package: No Parent.

Children

The following elements are children of package: conpilation, conpletion,
configuration,header,installation,preparation,uninstallation.

Example

See ReST Package Maker's Guide Appendix for afull package example.

38

Name

packagedi r -- Declare adirectory within the structure of the package file.

Description

If the packager wishes to create a package that contains a directory structure, rather than a flat package,
each directory inside the package must be declared with apackagedi r tag.

Parents

The following elements are valid parents of packagedi r : header .

Children

The following elements are children of packagedi r : No Children.

39

Name

packager -- Information about the person who created this ReST Package.

Description

Information about the person who created this ReST Package. This information could include name,
contact information, webpage, etc.

Parents

The following elements are valid parents of packager : header .

Children

The following elements are children of packager : nanme, uri .

40

Name

packagesr c -- Declares afile that appearsin the ReST package.

Description

Every file that is contained in a package must be declared with apackagesr c tag, confi gf i | e tag,
or apat ch tag (but not multiple tags). Any other file that is contained in the package will be ignored.

Parents

The following elements are valid parents of packagesr c: header .

Children

The following elements are children of packagesr c¢: No Children.

41

Name
pat ch -- Declares a patch file to be applied to the sources contained in this file. (NOT CURRENTLY
SUPPORTED)

Description

If the sources contained in this package need to be patched, a patch file can be included in the package
and declared with apat ch tag. The specifics of this patch file have not yet been determined and thistag
isnot yet supported by ReST.

Parents

The following elements are valid parents of pat ch: header .

Children

The following elements are children of pat ch: No Children.

42

Name

pr e -- A set of predefined options and substitutions.

Description
The pr e set gives developers a way to pre-define certain options and substitution cases for common in-

stallations. For example, if certain options are suggested when installing on x86 Linux, a pr e set may
be defined for x86 Linux installations. See pr edef s for a usage example.

Attributes

e name (required) - The name of this pre-defined set.
» description (optional) - A description of when this set is appropriate.

e id (optional) - A unique identifier for this set, used in package dependencies

Parents

The following elements are valid parents of pr e: pr edef s.

Children

The following elements are children of pr e: def .

43

Name

pr edef s -- Provide groups of pre-defined command options and configuration substitutions.

Description

When the developer wishes to pre-define certain options and configuration substitutions to help users by
simplifying package configuration, the pr edef s group is used. These sets alow the user to suggest
certain options and substitutions for common installation cases. For example, the developer may define
pre-defined sets for x86 Linux and Solaris.

Parents

The following elements are valid parents of pr edef s: header .

Children

The following elements are children of pr edef s: pre.

Example

Example 17. Predef and Def Example

Exanple still to be witten.

Name

pr epar ati on -- The 1st of the 5 stepsto installing a package.

Description

Thisis the 1st of the 5 steps to installing a package, occuring before configuration. Commands that re-
late to compiling the contained software should be done in this step.

Parents

The following elements are valid parents of pr epar at i on: package.

Children

The following elements are children of pr epar at i on: comand.

45

Name

sub -- Defines a substitution that will be made in a configuration file.

Description

This element maps a substitution in a configuration file. This substitution is only relevant to the file
defined by the parent conf i gfi | e tag.

Attributes

* name (required) - The token that will be substituted in the file. This token should not contain any
spaces or special characters.

» description (recommended) - A description of what this particular substitution does in the configura-
tion file.

» format (optional) - This parameter is used to validate that the input is of the proper form. Thisis not
currently supported by ReST.

» default (required) - The default value is this substitution is not customized.

» type (required) - What type of substitution is this? Valid types are string (one line of text), option
(chosen from alist), text (multiple lines of text), boolean (true/false).

» truevalue (required if type=boolean) - The value to subsitute if type is boolean and true is selected.
This can contain an empty string.

» falsevalue (required if type=boolean) - The value to subsitute if type is boolean and false is selected.
This can contain an empty string.

» choices (required if type=choice) - A comma separated list of posshile choices for this substitution.

» customChoice (optional) - If the type is choice and this attribute is set to true then the user may
choose from the list of options or give their own value for this substitution. If this attribute is false or
not declared, the user is restricted to the given choices.

Parents

The following elements are valid parents of sub: confi gfil e.

Children

The following elements are children of sub: No Children.

Example

Seeconfi gfi | e for an example of how to use thistag.

46

Name

title--Thetitlethewill appear in the ReST applications for this package.

Description

The title the will appear in the ReST applications for this package. If the title islonger than 32 characters
long (including spaces), an additional short title should be provided.

Atrributes

» role (optional) - If thisis some specia title, like a short title, what role does it serve? By default the
ReST applications only support role short, but other roles may be added.

Parents

The following elements are valid parentsof t i t | e: header .

Children

The following elements are children of t i t | e: No Children.

47

Name

uni nst al | at i on -- An option additional step to define how to uninstall a package.

Description

Thisis the an optiona step the defines how to uninstall a package. Commands that relate to deleting the
contained software should be done in this step.

Parents

The following elements are valid parents of uni nst al | ati on: package.

Children

The following elements are children of uni nst al | ati on: conmand.

48

Name

uri -- A standard URI that may be used to provide more information about a package or package au-
thor.

Description

A standard URI that may be used to provide more information about a package or package author. This
may include amailto URI.

Parents

The following elements are valid parents of ur i : header , packager .

Children

The following elements are children of ur i : No Children.

49

Name

ver si on -- Give the version of packaged software.

Description

The version of the software included in this package. This should be the software version and not a ver-
sion for the ReST package itself. The optional version attribute of package should be used instead to
give aversion of the ReST package, if desired.

Parents

The following elements are valid parents of ver si on: header .

Children

The following elements are children of ver si on: No Children.

50

Complete Package XML

51

Name

Complete Package XML Example -- Show the complete XML of a package.

Complete Package XML

Example 18. Example Package XML

<?xm version="1.0" encodi ng="UTF- 8" ?>
<package xm ns="http://icl.cs.utk.edu/ ReST/ Package/ 1. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocation="http://icl.cs.utk. edu/ ReST/ Package/ 1. 0
http://icl.cs.utk.edu/rest/restpackage-1_0.xsd">

<l-- Basic information about the software package -->
<header >
<title>NetSolve Installer</title>
<base>Net Sol ve</ base>
<ver si on>2. 0</ ver si on>
<descri pti on>Net Sol ve is a grid ni ddl eware package</descripti on>
<uri>http://icl.cs.utk.edu/ netsolve/</uri>

<l-- Basic information about the packager -->
<packager >
<nane>Jeff M Lar ki n</ nane>
<uri>mailto:larkin@s. utk.edu</uri>
</ packager >

<actions>
<action nane="Start Server" tooltip="Start a NetSol ve server.">
<command val ue="/bi n/bash ./start_server.sh" statusmsg="Starting Server"
errornsg="Failed to start server."/>

</ action>
<action name="Kill Server" tooltip="Kill a NetSolve server.">
<command val ue="/bi n/bash ./kill _server.sh" statusnsg="Killing Server"
errornsg="Failed to kill server."/>
</ action>
<action nane="Restart Server" tooltip="Restart a Net Sol ve server.">
<command val ue="/bi n/bash ./kill_server.sh" statusnsg="Killing Server"
errornsg="Failed to kill server."/>

<command val ue="/bi n/bash ./start_server.sh" statusnsg="Starting Server"
errornsg="Failed to start server."/>
</ action>
<action nane="Start Agent" tooltip="Start a NetSol ve Agent.">
<command val ue="/bi n/bash ./start_agent.sh" statusnsg="Starting Agent"
errornmsg="Failed to start Agent"/>

</ action>
<action nanme="Kill Agent" tooltip="Kill a NetSolve Agent.">
<command val ue="/bi n/bash ./kill _agent.sh" statusnsg="Killing Agent"
errornsg="Failed to kill Agent"/>
</ action>
<action nane="Restart Agent" tooltip="Restart a Net Sol ve Agent.">
<command val ue="/bi n/bash ./kill_agent.sh" statusnsg="Killing Agent"
errornmsg="Failed to kill Agent"/>

<conmand val ue="/bi n/ bash ./start_agent.sh" statusnsg="Starting Agent"
errornsg="Failed to start Agent"/>
</ action>
</ actions>

<configfile packagefil e="server_config"
renot ef i | e=" Net Sol ve- 2. 0/ server _confi g"
descri pti on="Net Sol ve Server Configuration File">
<sub nane="nproc" descri pti on="Nunber of processors"
defaul t ="2" type="string"/>
<sub nane="agent" descripti on="The Net Sol ve Agent host nane"
def aul t =" net sol ve. cs. ut k. edu" type="string"/>
<sub nanme="scratch" description="Scratch Directory"
defaul t="/tnmp/" type="string"/>
<sub name="npi host s" descri pti on="Nunber of MPl Hosts"
def aul t ="4" type="string"/>

52

Complete Package XML Example

<sub nane="wor kl oadmax" descri pti on="Maxi num al | owabl e wor kl oad"
defaul t="-1" type="string"/>
<sub nanme="testing" descripti on="Testing PDF"
trueval ue="" fal seval ue="#" type="bool ean" default="true"/>
<sub nanme="qgsort" descripti on="Qui ckSort PDF"
trueval ue="" fal seval ue="#" type="bool ean" default="true"/>
<sub nanme="area" description="Area PDF"

trueval ue="" fal seval ue="#" type="bool ean" defaul t="true"/>
<sub nane="nmandel brot" descri pti on="Mandel br ot PDF"

trueval ue="" fal seval ue="#" type="bool ean" defaul t="true"/>
<sub nanme="bl as_subset" descri pti on="BLAS Subset PDF"

trueval ue="" fal seval ue="#" type="bool ean" default="true"/>

<sub nanme="I| apack_subset" descri pti on="LAPACK Subset PDF"
trueval ue="" fal seval ue="#" type="bool ean" defaul t="true"/>
<sub nane="I| apack" descri pti on="LAPACK PDF"
trueval ue="" fal seval ue="#" type="bool ean" defaul t="fal se"/>
<sub nanme="| apack_ext ended" descri pti on="LAPACK Ext ended Drivers PDF"
trueval ue="" fal seval ue="#" type="bool ean" defaul t="fal se"/>
<sub nane="scal apack" descri ption="SCALAPACK PDF"
trueval ue="" fal seval ue="#" type="bool ean" default="fal se"/>
<sub nanme="sparse_iterative_solve" description="Sparse Iterative Sol vers PDF"
trueval ue="" fal seval ue="#" type="bool ean" defaul t="fal se"/>
<sub nane="sparse_direct_sol ve" descripti on="Sparse Direct Solvers PDF"
trueval ue="" fal seval ue="#" type="bool ean" defaul t="fal se"/>
<sub nane="ar pack" descri pti on="ARPACK PDF"
trueval ue="" fal seval ue="#" type="bool ean" defaul t="fal se"/>
<sub nane="t esti nggl obus" descri pti on="d obus Testing PDF"
trueval ue="" fal seval ue="#" type="bool ean" default="fal se"/>
<sub nanme="restrictions" description="Mxi mum al | owabl e wor kl oad"
defaul t="" type="text">* 10</sub>
</configfile>
<configfile packagefil e="MPl machi nes"
renot ef i | e=" Net Sol ve- 2. 0/ MPl nachi nes"
descri pti on="Net Sol ve MPI Hosts File">
<sub nanme="hosts" description="List of MPl Hosts" type="text" default="">
enterprise
enterprise
enterprise
enterprise
</ sub>
</configfile>
<configfil e packagefil e="netsol ve. env"
renot ef i | e="net sol ve. env"
descri pti on="Net Sol ve Environnent Vari abl es">
<sub nane="agent" descri pti on="Net Sol ve Agent"
def aul t =" net sol ve. cs. ut k. edu" type="string"/>
</configfile>
<!-- Package source(s). W can do both renote and local files -->
<packagesr c>Net Sol ve- 2. 0. t gz</ packagesr c>
<packagesr c>confi g. guess</ packagesr c>
<packagesrc>start_server. sh</ packagesrc>
<packagesrc>st art _agent . sh</ packagesrc>
<packagesrc>ki | | _agent. sh</ packagesrc>
<packagesrc>ki | | _server. sh</ packagesr c>

<installerattributes>
<backgr oundi mage>htt p: / / ww. cs. ut k. edu/ ~meek/ i cl /| GSAP/ net sol ve_bg. png</ backgr oundi nage>
<icon>http://icl.cs.utk.edu/favicon.ico</icon>
</installerattributes>
</ header >

<l-- Things to do before anything el se -->

<pr epar ati on>
<command val ue="gunzip -f Net Sol ve-2.0.tgz" grouped="true"/>
<command val ue="tar -xf NetSolve-2.0.tar" grouped="true"/>
<command val ue="cd Net Sol ve-2.0/" grouped="fal se"/>

</ prepar ati on>

<l-- Configuration of the package before conpilation -->
<configuration>
<l-- This is the configure line -->
<command val ue="./confi gure" grouped="true">
<l-- One of the possible configure options -->
<option nane="|apack" type="text" default="/usr/local/lib/libpack.a"
trueval ue="--with-|apack="/>
<option nane="bl as" type="text" defaul t="/usr/local/lib/libblas.a"
trueval ue="--w th-bl aslib="/>
<option nane="petsc" type="text" default=""
trueval ue="--with-petsc="/>

<option nane="petsclibdir" type="text" default=

53

Complete Package XML Example

<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti

<opti

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

trueval ue="--w t h-petsclibdir="/>
nanme="aztec" type="text" defaul t=""

trueval ue="--w th-aztec="/>

name="azteclib" type="text" defaul t=""

trueval ue="--wth-azteclib="/>

name="superl u" type="text" defaul t=""

trueval ue="--wth-superlu="/>

nane="superl ulib" type="text" default=""
trueval ue="--w t h-super!l ul i b="/>

name="ma28" type="bool ean" defaul t="fal se"
trueval ue="--w t h- mra28"/ >

name="it pack" type="bool ean" defaul t="fal se"
trueval ue="--with-itpack"/>

name="ar packl i b" type="text" defaul t=""
trueval ue="--with-arpackl i b="/>

nane="npi " type="text" default=""

trueval ue="--with-npi =" fal seval ue="--without-npi"/>
name="scal apack" type="text" defaul t=""
trueval ue="--wit h-scal apackl i b="/>

name="bl acsli b" type="text" defaul t=""

trueval ue="--wth-blacslib="/>

name="m dk" type="text" defaul t=""

trueval ue="--w t h-nm dk="/>

nane="rpclib" type="text" default=""

trueval ue="--with-rpclib="/>

name="r pci nc" type="text" defaul t=""

trueval ue="--w th-rpci nc="/>
name="oct ave-i ncl ude" type="text" defaul t=""
trueval ue="--with-octave-incl ude="/>
name="gpg" type="text" defaul t="/usr/bin/gpg"
trueval ue="--w t h-gpg=" fal seval ue="--w t hout - gpg"/ >
name="bui | dgpg" type="text" defaul t=""

trueval ue="--with-buil dgpg="/>

name="nws" type="text" defaul t=""

trueval ue="--wth-nws="/>

name="i bp" type="text" defaul t=""

trueval ue="--wth-ibp="/>

nane="ker beros" type="text" default=""

trueval ue="--wi t h- ker ber os"/ >

name="proxy" type="choi ce" choi ces="nestol ve, gl obus" defaul t=""
trueval ue="--w th-proxy "/>

name="ouput | evel " type="choi ce" choi ces="debug, vi ew, none" defaul t ="none"
trueval ue="--with-outputl evel "/>
name="i nf oserver" type="text" defaul t=""
trueval ue="--enabl e-i nf oserver"/>

</ conmand>
</ confi guration>

<!-- Source Conpilation -->
<conpi | ati on>
<command val ue="nake" grouped="true">

<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti

</ command>

on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on

t ype="bool ean" trueval ue="standard" nane="Standard" enabl ed="true"/>
type="bool ean" trueval ue="all" nanme="Al"/>

type="bool ean" trueval ue="server" nanme="Server"/>

type="bool ean" trueval ue="agent" nanme="Agent"/>

type="bool ean" trueval ue="C"' nane="C'/>

type="bool ean" trueval ue="Fortran" name="Fortran"/>

t ype="bool ean" trueval ue="natl ab" name="Matl| ab"/>

type="bool ean" trueval ue="octave" nanme="Cctave"/>

type="bool ean" trueval ue="nmat hemati ca" nanme="Mat hemati ca"/>
type="bool ean" trueval ue="gridrpc" name="Gi dRPC'/>

type="bool ean" trueval ue="pdfgui" nanme="PDF CQui"/>

type="bool ean" trueval ue="t ool s" name="Tool s"/>

type="bool ean" trueval ue="w appers" nane="W appers"/>
type="bool ean" trueval ue="tester" nanme="Tester"/>

t ype="bool ean" trueval ue="regress" name="Regressi on Test Suite"/>
type="bool ean" trueval ue="cl ean" name="C ean"/>

type="bool ean" trueval ue="confi gcl ean" nanme="Confi gcl ean"/>
type="bool ean" trueval ue="CLEAN' nane="Cl ean every architecture"/>

</ conpi | ati on>

<!-- Package Installation -->
<installation>

<!l --<commuand val ue="nmake install"/>-->
</installation>

<l-- O ean-up what is no |l onger needed -->

<conpl eti on>

<conmmand val ue="cd ../"/>

Complete Package XML Example

<conmand val ue="rm -rf Net Sol ve-2.0.tar" grouped="true"/>
<command val ue="rm -rf Net Sol ve-2.0.tgz" grouped="true"/>
</ conpl eti on>

</ package>

55

