
ReST Packager's Guide

An introduction to creating ReST packages.

Jeff M Larkin, Innovative Computing Laboratory, UT <larkin@cs.utk.edu>
Eric T Meek, Innovative Computing Laboratory, UT <meek@cs.utk.edu>



ReST Packager's Guide: An introduction to creating ReST pack-
ages.
by Jeff M Larkin and Eric T Meek

Abstract

This document provides information for those interested in creating a ReST Installer package for a piece of soft-
ware. It provides information detailing the process of package creation. It is assumed that the reader has at least a
basic knowledge of the ReST project.





Table of Contents
1. ReST Package Basics ............................................................................................................... 1

The Package Structure ......................................................................................................... 1
The Package XML .............................................................................................................. 1

2. Writing the package XML ......................................................................................................... 2
Planning ............................................................................................................................ 2
Writing the XML ................................................................................................................ 2

The Header ................................................................................................................ 2
The 6 Steps ................................................................................................................ 3
Command Options ...................................................................................................... 3
Actions ..................................................................................................................... 4
Configuration Files ...................................................................................................... 4

3. Creating and using the package file ............................................................................................. 6
4. Conclusions ............................................................................................................................ 7
I. Package XML Elements ............................................................................................................ 8

action ............................................................................................................................ 9
actions ........................................................................................................................ 10
backgroundcolor ........................................................................................................ 11
backgroundimage ........................................................................................................ 12
base .............................................................................................................................. 13
checksumuri ................................................................................................................ 14
command ........................................................................................................................ 15
compilation ................................................................................................................ 17
completion .................................................................................................................. 18
configfile .................................................................................................................. 19
configuration ............................................................................................................ 21
def ................................................................................................................................ 22
description ................................................................................................................ 23
explorerattributes .................................................................................................. 24
header .......................................................................................................................... 25
icon .............................................................................................................................. 27
info .............................................................................................................................. 28
infouri ........................................................................................................................ 29
installation .............................................................................................................. 30
installerattributes ................................................................................................ 31
license ........................................................................................................................ 32
licenseuri .................................................................................................................. 33
monitorattributes .................................................................................................... 34
name .............................................................................................................................. 35
option .......................................................................................................................... 36
package ........................................................................................................................ 38
packagedir .................................................................................................................. 39
packager ...................................................................................................................... 40
packagesrc .................................................................................................................. 41
patch ............................................................................................................................ 42
pre ................................................................................................................................ 43
predefs ........................................................................................................................ 44
preparation ................................................................................................................ 45
sub ................................................................................................................................ 46
title ............................................................................................................................ 47
uninstallation .......................................................................................................... 48
uri ................................................................................................................................ 49
version ........................................................................................................................ 50

II. Complete Package XML ......................................................................................................... 51

iv



Complete Package XML Example ........................................................................................ 52

ReST Packager's Guide

v



List of Examples
2.1. Package Header .................................................................................................................... 2
2.2. The 6 Steps .......................................................................................................................... 3
2.3. Command Options ................................................................................................................. 3
2.4. Package Actions .................................................................................................................... 4
2.5. Stub Configuration File .......................................................................................................... 5
2.6. Configuration File XML ......................................................................................................... 5
3.1. Running the ReST Packager. ................................................................................................... 6
3.2. Installing a Package ............................................................................................................... 6
9. Action Example ....................................................................................................................... 9
10. Actions Example .................................................................................................................. 10
11. Command Example .............................................................................................................. 16
12. Configfile XML Example ...................................................................................................... 19
13. Sample Configuration File Stub .............................................................................................. 20
14. Package Header Example ...................................................................................................... 25
15. License Example .................................................................................................................. 32
16. Licenseuri Example .............................................................................................................. 33
17. Predef and Def Example ........................................................................................................ 44
18. Example Package XML ......................................................................................................... 52

vi



Chapter 1. ReST Package Basics
Although used primarily by the ReST Installer, ReST packages are the means by which the ReST Ap-
plication Suite is customized for individual pieces of software. The ReST package contains the software
and metadata needed by the Installer to install software on remote machines. The package metadata is
used by the Installer and Explorer to maintain the state of installed software and in future versions of
ReST it will contain information needed to customize the Monitor to work with the installed packages.
In order to produce a well-written package it is important to understand what is contained in the package
and what conventions are expected by the ReST Suite.

The Package Structure
A ReST package is essentially a ZIP/JAR file containing two special files, a package XML file and a
checksum file. The package XML file, name package.xml inside the package, contains both basic
metadata about the package and instructions on how to install the package from source or pre-compiled
binaries. The checksum file, at this time must be created by the ReSTPackager program contains check-
sums of each file within the package and is must pass before the Installer will run the package. Details
about the package sources are not necessary, since they could be any file that is pertenant to the software
being installed. Details about writing the package XML, including documentation of each XML tag, and
creating the package file appear later in this document.

The Package XML
The package XML is what makes a ReST package special. It includes metadata pertaining to the soft-
ware package, instructions on installing the contained software, and a list of actions that can be per-
formed once the software has been installed. The XML file can be thought of as an enhanced shell
script, since it contains a list of commands that are run sequentially to install the package. It is more than
a simple shell script, however, in that packagers are able to define options that can be customized by the
end user from the ReST Installer.

Commands in the package XML are broken into six steps, which simply provide a logical grouping of
the commands that are run. The six steps, in order, are Preparation, Configuration, Compilation, Install-
ation, Complettion, and Uninstallation, with the last actually being optional. Commands that need to be
run first, before anything else can happen, such as extracting archives or creating directories should be
placed in the perparation step. Package sources will be sent to the remote machine and package director-
ies will be created prior to this step. Anything pertaining to configuring the software, such as running a
configure script should be placed in the configuration step. Configuration files included in the package
will be sent to the remote machine between these first two steps. Commands related to compiling and in-
stalling the package should be placed in the next two steps respectively. During the completion step the
packager should clean up the build area however possible, such as deleting unneeded sources that re-
main. Lastly, if a packager would like to provide a means for automatically uninstalling their software,
commands pertaining to this should be placed in the uninstallation step. Each step is essentially equal,
but provides a logical way of organizing the package. Packagers are encouraged to group their com-
mands using these logical step. Every step except the uninstallation step must be in the package XML,
but may be empty if not needed.

1



Chapter 2. Writing the package XML
Future versions of the ReST suite may contain a graphical application for creating package XML files,
but at the current time the file must be written by hand. For this reason it is crucial for the packager to
gain an understanding of the package XML file to create a working package. Package XML files can be
written in any text editor so long as they obey the rules defined for ReST XML. A definition of each
XML tag is given in the reference sections at the end of this document.

Planning
The planning step is the most important part in successfully creating a working package. Before writing
the XML create a step-by-step list of how the software is installed. If possible, walk through the installa-
tion in a clean /bin/bash environment, since this will more realistically reflect the environment in which
ReST will install the software. Once this list has been written, place a mark next to each command that
would not need to be run on every machine in an homogeneous environment with a shared filesystem.
Now note command options that should be offered for each command, for example ./configure -
-with-foo. Try installing the software by walking through this list one command at a time; if it works
without problem then fewer problems are likely to occur when the package is written.

Writing the XML
The sections below will provide an overview of how to write a package XML file. For more detailed in-
formation about the XML tags, including advanced attributes, please see the reference section at the end
of this document.

The Header
The package header contains metadata about the package that will be shared among all of the ReST ap-
plications. This metadata includes the name of the software, the author and version of the software, and
information about the packager. Below is a basic package header.

Example 2.1. Package Header

<header>
<title>Example Package</title>
<base>example</base>
<version>1.0</version>
<description>This package is an example ReST package.</description>
<uri>http://icl.cs.utk.edu/rest/</uri>
<licenseuri forceaccept="true">http://example.com/license.txt</licenseuri>
<packager>
<name>Joe Devloper</name>
<uri>mailto:developer@example.com</uri>

</packager>
</header>

There are several important tags in the above example. The title sets the package title that will appear
in the Installer. If the title is longer than 25 characters, a second, shorter title may be set with the role
attribute set to short. If no short title is provided and the title is longer than 25 characters, then in space-
constrained parts of the application the long title will be truncated at 25 characters. The base element
gives a way of grouping packages that should be installed in a similar area. For example, packages for
the LAPACK and BLAS libraries have been written with a base of lib so that they, and other libraries,
will be easy to find and use. The base should always be set to a value that will be valid for the filesys-

2



tem on all target machines.

The contents of the version tag should be the version on the software in the package and not the ver-
sion of the package itself. The version of the package can be given as an attribute of the package root
element if desired. Additional tags exist for the package header, including options for editing configura-
tion files, added files to the package, and defining actions that can be performed once the package has
been installed. All of these tags are defined with examples in a reference section at the end of this docu-
ment.

The 6 Steps
As explained earlier, all commands for installing and uninstalling a package are organized into six logic-
al steps: preparation, configuration, compilation, installation, completion, and
uninstallation. The uninstallation step is optional, but recommended. These steps are es-
sentially equal, except that configuration files are sent to the remote machine between the prepara-
tion and configuration steps. It is highly recommended that packagers take advantage of the six
steps for logically grouping the package commands. Future version of the the ReST suite may contain
optimizations or changes in the handeling of these steps and forward compatibility is best ensured by us-
ing these steps. Below is an example of the six steps appearing in a package.

Example 2.2. The 6 Steps

<preparation>
<command value="tar -xf example.tar">
<command value="cd example/">

</preparation>
<configuration>

<command value="./configure --prefix=$PWD">
</configuration>
<compilation>

<command value="make all">
</compilation>
<installation>

<command value="make install">
</installation>
<completion>

<command value="make clean">
<command value="cd ..; /bin/rm -f example.tar">

</completion>
<uninstallation>

<command value="cd example">
<command value="make uninstall">
<command value="cd ..; /bin/rm -rf example/">

</uninstallation>

Command Options
Some commands may need to be configured by the user before they are run on the remote machine. For
that reason the ReST XML allows command tags to contain option tags. The option tags define
command-line arguments for a given command and can be configured by end users. A good example of
a command that will likely contain options is the ./configure script, which is included in many
source distributions. It is common for this command to have many different command line options for
properly configuring the build process. Below is an example of the ./configure command with op-
tions.

Example 2.3. Command Options

<command value="./configure" grouped="true">

Writing the package XML

3



<option name="foo" type="text" default="/usr/local/lib/libfoo.a"
truevalue="--with-libfoo="/>

<option name="bar" type="boolean" default="false"
truevalue="--with-libbar" falsevalue="--without-libbar"/>

<option name="ouputlevel" type="choice" choices="debug,view,none" default="none"
truevalue="--with-outputlevel "/>

</command>

The above example defines three possible options for the ./configure command. All of the options
have four common attributes: name, type, default, and truevalue. The name attribute is exactly what
would be expected, the name that the user will see when configuring this option. The type attribute may
be either text, boolean, or choice. The default attribute defines what the value should be by de-
fault, which is required for installation in simple mode. Finally the truevalue attribute defines what is ap-
pended to the command if the option is enabled or if a option of type boolean is selected. For example, if
option foo is enabled and the default value is left untouched the resulting string -
-with-libfoo=/usr/local/lib/libfoo.a will be appended to the command. Packagers are
encouraged to expose all possible command-line options to the users through ReST as the packager is
more knowledgeable about the software included than the user. Additional information about the op-
tion tag can be found in the reference section at the end of this document.

Actions
ReST actions are commands that exist on systems after a software package has been installed. For a
piece of server software, for example, this could include starting, stopping, and restarting the server. An
action is simply a wrapper around one or more command tags, much like each of the six steps de-
scribed above, except that the action tag requires a name for the action. Actions can be run by the
ReST Installer immediately after installation is complete or by the ReST Exploror at any time after
package installation. Below is an example of package actions.

Example 2.4. Package Actions

<actions>
<action name="Start Server" tooltip="Start a server.">
<command value="/bin/bash ./start_server.sh" statusmsg="Starting Server"

errormsg="Failed to start server."/>
</action>
<action name="Kill Server" tooltip="Kill a server.">
<command value="/bin/bash ./kill_server.sh" statusmsg="Killing Server"

errormsg="Failed to kill server."/>
</action>
<action name="Restart Server" tooltip="Restart a server.">
<command value="/bin/bash ./kill_server.sh" statusmsg="Killing Server"

errormsg="Failed to kill server."/>
<command value="/bin/bash ./start_server.sh" statusmsg="Starting Server"

errormsg="Failed to start server."/>
</action>

</actions>

Configuration Files
Many software packages have configuration files that must be edited before the software can be used.
To the developer of a software package writing the configuration files may be trivial, but this is often
not the case for the end user. For this reason, the ReST Installer may be used to edit configuration files
for the software package. The package must include a stub configuration file with a series of tokens to
substitute. Each token appears with a % character on either side of the one-word token, such as
%token%. With a stub file created the packager must define the substitutions for this file in the package
XML. Below is an example stub file and matching package XML.

Writing the package XML

4



Example 2.5. Stub Configuration File

FOO=%sub1%

Example 2.6. Configuration File XML

<configfile packagefile="example.cfg"
remotefile="example/example.cfg"
description="Example Configuration File">

<sub name="sub1" description="First Substitution"
default="My First Substitution" type="string"/>

</configfile>

In the above example just one substitution is made, but ReST will handle as many substitutions as are
needed. Three types of substitions exist, string (no more than one line of text), text (multiple lines
of text), and choice (a defined set of choices, much like available for command options). The con-
figfile tag has three attributes: packagefile (the location of the stub file in the package), remotefile
(where the resulting configuration file should be placed on the remote machine), and description (a
simple description for the user). Addtional information about the configfile and sub tags, includ-
ing additional attributes to each, can be found in the reference section at the end of this document.

Writing the package XML

5



Chapter 3. Creating and using the
package file

Once the package XML has been written, stub configuration files have been created and source files
have been gathered, it is time to combine all of the files into a ReST package. Part of the ReST suite is
the ReST Packager utility. This utility combines all of the necessary files into one package for easy dis-
tribution. Below is an example of how the ReST Packager is used.

Example 3.1. Running the ReST Packager.

> java -jar ReSTPackager.jar -X examplepackage.xml -f example.rsp file1 file2 stub.cfg

In the above example, the user has run the ReST Packager, which is included in the ReST suite to create
a package named example.rsp. The -X argument tells the ReST Packager to use examplepack-
age.xml as the package XML file for this package. The -f argument tells the packager the name of
the file to create. The remaining arguments tell the Packager which files to include. Every file that is de-
clared in the package.xml must be included in the Packager arguments. The resulting file can be distrib-
uted by whatever means desired and used with the ReST Installer.

Once the package file is created, it simply needs to be installed from the ReST Installer. To install the
package, run the ReST Installer with the name of the package as an argument. The package can be local
or placed on a web server, although larger packages will run more quickly if they are local. Here is an
example of our package being used by the ReST Installer.

Example 3.2. Installing a Package

> java -jar ReSTInstaller.jar example.rsp

6



Chapter 4. Conclusions
The ReST package specification was designed to give packagers a flexible system for creating an applic-
ation installer for their software. This document should have given you the basic knowledge needed to
build a package for your software. More detailed information about the ReST package XML, including a
full example can be found in the reference pages of this document. For questions about ReST and to
provide feedback or suggestions, please feel encouraged to e-mail the authors of this document.

7



Package XML Elements

8



Name
action -- Commands that can be run after a package has been installed.

Description
Once a package has been installed there may be some commands that a user will be able to run. ReST
calls these commands "actions" and allows them to be run in the Installer immediately after an installa-
tion or by the Explorer at any time after the package has been installed.

Atrributes

• name (required) - How the action should be known

• tooltip (required) - This will appear as a tooltip in the ReST applications

• id (optional) - A unique id for this action within the package. This is only needed if there are depend-
encies between actions.

• depends (optional) - A comma-separated list of action ids on which this action depends.

Parents
The following elements are valid parents of action: actions.

Children
The following elements are children of action: command.

Example

Example 9. Action Example

<action name="Start Server" tooltip="Start a server.">
<command value="/bin/bash ./start_server.sh" statusmsg="Starting Server"

errormsg="Failed to start server."/>
</action>

9



Name
actions -- Wrapper element for multiple action elements.

Description
This element appears in the ReST package header and contains 1 or more action elements.

Parents
The following elements are valid parents of actions: header.

Children
The following elements are children of actions: action.

Example

Example 10. Actions Example

<actions>
<action name="Start Server" tooltip="Start a server.">
<command value="/bin/bash ./start_server.sh" statusmsg="Starting Server"

errormsg="Failed to start server."/>
</action>
<action name="Kill Server" tooltip="Kill a server.">
<command value="/bin/bash ./kill_server.sh" statusmsg="Killing Server"

errormsg="Failed to kill server."/>
</actions>

10



Name
backgroundcolor -- Declare the background color that should be used in the ReST applications
when referencing this package.

Description
If the backgroundcolor element appears in an application's attributes then the declared color will be
used instead of the default background color for applications referencing this package. The color should
be given in hex notation as would be given in HTML code.

Parents
The following elements are valid parents of backgroundcolor: explorerattributes, in-
stallerattributes, monitorattributes.

Children
The following elements are children of backgroundcolor: No Children.

11



Name
backgroundimage -- Declare the background image that should be used in the ReST applications
when referencing this package.

Description
If the backgroundimage element appears in an application's attributes then the given image will ap-
pear as a watermark in the background of ReST applications as they refernce this package. The image
could be included in the ReST package or reference an image that appears in a web space.

Parents
The following elements are valid parents of backgroundimage: explorerattributes, in-
stallerattributes, monitorattributes.

Children
The following elements are children of backgroundimage: No Children.

12



Name
base -- Gives the base directory for this package.

Description
By defining a base directory for a package, multiple packages can be organized to share a common
space. This is useful for organizing libraries, which can be given a base of libs, or software packages
that include several plugable or optional components that may be installed at a later time.

Parents
The following elements are valid parents of base: header.

Children
The following elements are children of name: No Children.

13



Name
checksumuri -- Give the uri to a file that contains the checksum for this package.

Description
When a package is created with the ReST packager a checksum is printed, which can be placed in a file
on a webspace. This element points to such a file to give the ReST application the ability to verify the
package before using it. This behavior is optional. ReST packages already contain checksums of the
files contained, which are verified when a package is used; package checksums are in addition to this be-
havior. At the current time checksumuri is not supported, but will be added to future versions of
ReST.

Attributes

• forcechecksum - If set to true, ReST applications will not accept a package that does to match the
given checksum. If set to false, the application will simply warn that the checksum does not match.
If forcechecksum does not appear, false is assumed.

Parents
The following elements are valid parents of chucksumuri: header.

Children
The following elements are children of chucksumuri: No Children.

14



Name
command -- Run a command on the remote system.

Description
The command tag declares a single command to be run on the remote system. By default this command
is run in a /bin/bash environment and commands should be written with this in mind. A command
contains 0 or more option tags, allowing the command to be configured from the ReST application's
GUI.

Attributes

• value (required) - The command to be run.

• shell (optional) - The shell in which to run the command. At this time shell is not supported, but
support will be added in future versions of ReST.

• required (optional) - If the user should be given the option to not run this command, required
should be set to false. If required is not given, the command will be run.

• grouped (optional) - If running the command on one machine in a given logical group is sufficient,
set grouped="true", if grouped is not given or grouped="false" the command will be
run on every machine in the logical group.

• id (optional) - A unique id given to this command, which is used if command dependencies exist.
Dependencies are not supported at this time.

• depends (optional) - A comma-separated list of ids on which this command depends. Dependencies
are not supported at this time.

• errormsg (optional) - A short message that should be displayed as the status of a given location if the
command fails.

• statusmsg (optional) - A short message that will be displayed as the status of a given location as it
runs a command.

• description (optional) - A description of the command, used to help users understand the commands
as they are configured.

• forceConfigure (optional) - By default command options are only configured in Advanced Mode for
a given ReST application. However, if a given command must be configured, set forceConfig-
ure="true".

Parents
The following elements are valid parents of command: action, compilation, completion,
configuration, installation, preparation, uninstallation.

Children

15



The following elements are children of command: option.

Example

Example 11. Command Example

<command value="make" grouped="true">
<option type="boolean" truevalue="standard" name="Standard" enabled="true"/>
<option type="boolean" truevalue="all" name="All"/>
<option type="boolean" truevalue="server" name="Server"/>
<option type="boolean" truevalue="agent" name="Agent"/>
<option type="boolean" truevalue="C" name="C"/>
<option type="boolean" truevalue="Fortran" name="Fortran"/>
<option type="boolean" truevalue="matlab" name="Matlab"/>
<option type="boolean" truevalue="octave" name="Octave"/>
<option type="boolean" truevalue="mathematica" name="Mathematica"/>
<option type="boolean" truevalue="gridrpc" name="GridRPC"/>
<option type="boolean" truevalue="pdfgui" name="PDF Gui"/>
<option type="boolean" truevalue="tools" name="Tools"/>
<option type="boolean" truevalue="wrappers" name="Wrappers"/>
<option type="boolean" truevalue="tester" name="Tester"/>
<option type="boolean" truevalue="regress" name="Regression Test Suite"/>
<option type="boolean" truevalue="clean" name="Clean"/>
<option type="boolean" truevalue="configclean" name="Configclean"/>
<option type="boolean" truevalue="CLEAN" name="Clean every architecture"/>

</command>

command

16



Name
compilation -- The 3rd of the 5 steps to installing a package.

Description
This is the 3rd of the 5 steps to installing a package, occuring after configuration and before installation.
Commands that relate to compiling the contained software should be done in this step.

Parents
The following elements are valid parents of compilation: package.

Children
The following elements are children of compilation: command.

17



Name
completion -- The 5th of the 5 steps to installing a package.

Description
This is the 5th of the 5 steps to installing a package, occuring after installation. Commands that must be
run after a package is installed or relate to cleaning up the build area, such as removing unneeded files
should be placed in this step.

Parents
The following elements are valid parents of completion: package.

Children
The following elements are children of completion: command.

18



Name
configfile -- Declare a file that must be configured by the user.

Description
A package may contain configuration files for the packaged software. These files will be configured
from the GUI by the user. The configfile will contain several sub tags, which define tokens that
will be replaced in the file.

Attributes

• packagefile (required) - The name of the file as it is contained in the package.

• remotefile (required) - The name of the file as it should be on the remote system. This can be a relat-
ive pathname (ex. src/file.conf).

• description (optional) - A description of the file's purpose or conventions.

• forceConfigure (optional) - If forceConfigure="true" the user will be required to edit the
file, even if they are not in Advanced Mode in the ReST application. If forceCongfigure is not
declated or forceConfigure="false" the defaults will be used for all substitutions.

Parents
The following elements are valid parents of configfile: header.

Children
The following elements are children of configfile: sub.

Example

Example 12. Configfile XML Example

<configfile packagefile="server_config"
remotefile="NetSolve-2.0/server_config"
description="NetSolve Server Configuration File">

<sub name="nproc" description="Number of processors"
default="2" type="string"/>

<sub name="agent" description="The NetSolve Agent hostname"
default="netsolve.cs.utk.edu" type="string"/>

<sub name="scratch" description="Scratch Directory"
default="/tmp/" type="string"/>

<sub name="mpihosts" description="Number of MPI Hosts"
default="4" type="string"/>

<sub name="workloadmax" description="Maximum allowable workload"
default="-1" type="string"/>

</configfile>

19



Example 13. Sample Configuration File Stub

@PROC:%nproc%
@AGENT:%agent%
@WORKLOADMAX:%workloadmax%
@SCRATCH:%scratch%
@MPIHOSTS ./MPImachines %mpihosts%

configfile

20



Name
configuration -- The 2nd of the 5 steps to installing a package.

Description
This is the 2nd of the 5 steps to installing a package, occuring after preparation and before compilation.
Commands that relate to configuration for compilation (such as running configure scripts) should be
done in this step. Configuration files are sent to the remote location immediately before this step.

Parents
The following elements are valid parents of configuration: package.

Children
The following elements are children of configuration: command.

21



Name
def -- Defines a substitution or command option in a pre set.

Description
This element is used to define a command option (if type="option") or substitution (if type="sub") with-
in a pre set. See predefs for a usage example.

Attributes

• type (required) - Either option or sub, defining whether this definition is for a command option or
configuration substitution.

• ref (required) - The id of the option or substitution to which this definition refers.

Parents
The following elements are valid parents of def: pre.

Children
The following elements are children of def: No Children.

22



Name
description -- Provide a description of the package.

Description
A description of the software included in this package. This description should give users an understand-
ing of the software's purpose.

Parents
The following elements are valid parents of description: header.

Children
The following elements are children of description: No Children.

23



Name
explorerattributes -- Contains attributes to customize the look and feel of the ReST Explorer
for a specific package.

Description
Contains attributes to customize the look and feel of the ReST Explorer for a specific package.

Parents
The following elements are valid parents of explorerattributes: header.

Children
The following elements are children of explorerattributes: backgroundcolor, back-
groundimage, icon.

24



Name
header -- Provide basic metadata about the package.

Description
This item contains the package metadata.

Parents
The following elements are valid parents of header: package.

Children
The following elements are children of header: action, actions, checksumuri,
configfile, description, explorerattributes, info, infouri, license, licen-
seuri, monitorattributes, name, packagedir, packager, packagesrc, patch, pre-
defs, title, packager, packager.

Example

Example 14. Package Header Example

<header>
<name>NetSolve</name>
<title>NetSolve Installer</title>
<version>2.0</version>
<description>NetSolve is a grid middleware package</description>
<uri>http://icl.cs.utk.edu/netsolve/</uri>

<!-- Basic information about the packager -->
<packager>

<name>Jeff M. Larkin</name>
<uri>mailto:larkin@cs.utk.edu</uri>

</packager>

<actions>
<action name="Start Server" tooltip="Start a NetSolve server.">
<command value="/bin/bash ./start_server.sh" statusmsg="Starting Server"

errormsg="Failed to start server."/>
</action>
<action name="Kill Server" tooltip="Kill a NetSolve server.">
<command value="/bin/bash ./kill_server.sh" statusmsg="Killing Server"

errormsg="Failed to kill server."/>
</action>
</action>

</actions>

<configfile packagefile="server_config"
remotefile="NetSolve-2.0/server_config"
description="NetSolve Server Configuration File">

<sub name="nproc" description="Number of processors"
default="2" type="string"/>

<sub name="agent" description="The NetSolve Agent hostname"
default="netsolve.cs.utk.edu" type="string"/>

<sub name="scratch" description="Scratch Directory"
default="/tmp/" type="string"/>

<sub name="mpihosts" description="Number of MPI Hosts"
default="4" type="string"/>

<sub name="workloadmax" description="Maximum allowable workload"
default="-1" type="string"/>

25



</configfile>
<!-- Package source(s). We can do both remote and local files -->
<packagesrc>NetSolve-2.0.tgz</packagesrc>
<packagesrc>config.guess</packagesrc>
<packagesrc>start_server.sh</packagesrc>
<packagesrc>kill_server.sh</packagesrc>

<installerattributes>
<backgroundimage>http://www.cs.utk.edu/~meek/icl/GSAP/netsolve_bg.png</backgroundimage>
<icon>http://icl.cs.utk.edu/favicon.ico</icon>

</installerattributes>
</header>

header

26



Name
icon -- Defines the icon to appear in the titlebar of a ReST application when referencing this ReST
package.

Description
If icon is given in explorerattributes, installerattributes, monitorattributes
and icon will appear in the titlebar of the related ReST application when referencing this package.

Parents
The following elements are valid parents of icon: explorerattributes, installerattrib-
utes, monitorattributes.

Children
The following elements are children of icon: No Children.

27



Name
info -- Give additional information about the software contained in this package.

Description
This is an optional tag to give additional information about the software contained in the package. The
tag could be used to display the contents of a README file, for instance.

Parents
The following elements are valid parents of info: header.

Children
The following elements are children of info: No Children.

28



Name
infouri -- Give a link to a text file containing additional information about the software contained in
this package.

Description
This is an optional tag to give additional information about the software contained in the package. The
link should point to a text file located on a web server. The tag could be used to display the contents of a
README file, for instance.

Parents
The following elements are valid parents of infouri: header.

Children
The following elements are children of infouri: No Children.

29



Name
installation -- The 4th of the 5 steps to installing a package.

Description
This is the 4th of the 5 steps to installing a package, occuring after compilation and before completion.
Commands that relate to installing the software in its final location should be placed in this step.

Parents
The following elements are valid parents of installation: package.

Children
The following elements are children of installation: command.

30



Name
installerattributes -- Contains attributes to customize the look and feel of the ReST Installer
for a specific package.

Description
Contains attributes to customize the look and feel of the ReST Installer for a specific package.

Parents
The following elements are valid parents of installerattributes: header.

Children
The following elements are children of installerattributes: backgroundcolor, back-
groundimage, icon.

31



Name
license -- Define the licensing terms of the included software.

Description
License and licenseuri give the packager a way to provide licensing information about the enclosed soft-
ware. License elements should contain the text of the license while Licenseuri is simply a link to a text
file containing the license. If Licenseuri is used, the ReST application will retrieve the license file and
display its contents. Both elements are optional.

Example

Example 15. License Example

<license forceaccept="true">This is the license that you must accept</license>

Parents
The following elements are valid parents of license: header.

Children
The following elements are children of license: No Children.

32



Name
licenseuri -- Define the licensing terms of the included software.

Description
License and licenseuri give the packager a way to provide licensing information about the enclosed soft-
ware. License elements should contain the text of the license while Licenseuri is simply a link to a text
file containing the license. If Licenseuri is used, the ReST application will retrieve the license file and
display its contents. Both elements are optional.

Example

Example 16. Licenseuri Example

<licenseuri forceaccept="true">http://example.com/license.txt</license>

Parents
The following elements are valid parents of licenseuri: header.

Children
The following elements are children of licenseuri: No Children.

33



Name
monitorattributes -- Contains attributes to customize the look and feel of the ReST Monitor for a
specific package.

Description
Contains attributes to customize the look and feel of the ReST Monitor for a specific package.

Parents
The following elements are valid parents of monitorattributes: header.

Children
The following elements are children of monitorattributes: backgroundcolor, back-
groundimage, icon.

34



Name
name -- Gives the name of the packager.

Description
The name tag is used to provide the name of the packager. It is a generic element that could be extended
for more uses in the future.

Parents
The following elements are valid parents of name: packager.

Children
The following elements are children of name: No Children.

35



Name
option -- Declares configurable options for a command.

Description
Some commands may be configurable through command-line options. Using one or more option tags
within and command allows users to customize these options via the ReST GUI.

Attributes

• name (required) - The name to appear by the option during customization.

• default (required) - The default value for this option. This is appended to the command after the true-
value (if type is not boolean. This may be an empty string.

• type (required) - What type of substitution is this? Valid types are string (one line of text), choice
(chosen from a list), boolean (true/false).

• truevalue (required) - If type=boolean, this is the value to to append to the command. If type is not
boolean then this will be appended to the command before the value input from the user. This can be
an empty string.

• falsevalue (required only if type=boolean) - The value to append if type is boolean and false is selec-
ted. This can be an empty string.

• choices (required if type=choice) - A comma separated list of possbile choices for this option.

• customChoice (optional) - If the type is choice and this attribute is set to true then the user may
choose from the list of choices or give their own value for this option. If this attribute is false or not
declared, the user is restricted to the given choices.

• id (optional) - A unique id given to this option, which is used if option dependencies exist. Depend-
encies are not supported at this time.

• depends (optional) - A comma-separated list of ids on which this option depends. Dependencies are
not supported at this time.

• enabled (optional) - If true this option will be turned on by default. If false or missing this option will
be turned off by default.

• description (optional) - A description of what this option does to the command.

Parents
The following elements are valid parents of option: command.

Children
The following elements are children of option: No Children.

36



Example
See command for an example of how to use options.

option

37



Name
package -- The ReST Package root element.

Description
This is the root element for a ReST package.

Attributes

• version (optional) - The version of this package. This does not necessarily match the version of the
software contained in the package.

Parents
The following elements are valid parents of package: No Parent.

Children
The following elements are children of package: compilation, completion,
configuration, header, installation, preparation, uninstallation.

Example
See ReST Package Maker's Guide Appendix for a full package example.

38



Name
packagedir -- Declare a directory within the structure of the package file.

Description
If the packager wishes to create a package that contains a directory structure, rather than a flat package,
each directory inside the package must be declared with a packagedir tag.

Parents
The following elements are valid parents of packagedir: header.

Children
The following elements are children of packagedir: No Children.

39



Name
packager -- Information about the person who created this ReST Package.

Description
Information about the person who created this ReST Package. This information could include name,
contact information, webpage, etc.

Parents
The following elements are valid parents of packager: header.

Children
The following elements are children of packager: name, uri.

40



Name
packagesrc -- Declares a file that appears in the ReST package.

Description
Every file that is contained in a package must be declared with a packagesrc tag, configfile tag,
or a patch tag (but not multiple tags). Any other file that is contained in the package will be ignored.

Parents
The following elements are valid parents of packagesrc: header.

Children
The following elements are children of packagesrc: No Children.

41



Name
patch -- Declares a patch file to be applied to the sources contained in this file. (NOT CURRENTLY
SUPPORTED)

Description
If the sources contained in this package need to be patched, a patch file can be included in the package
and declared with a patch tag. The specifics of this patch file have not yet been determined and this tag
is not yet supported by ReST.

Parents
The following elements are valid parents of patch: header.

Children
The following elements are children of patch: No Children.

42



Name
pre -- A set of predefined options and substitutions.

Description
The pre set gives developers a way to pre-define certain options and substitution cases for common in-
stallations. For example, if certain options are suggested when installing on x86 Linux, a pre set may
be defined for x86 Linux installations. See predefs for a usage example.

Attributes

• name (required) - The name of this pre-defined set.

• description (optional) - A description of when this set is appropriate.

• id (optional) - A unique identifier for this set, used in package dependencies

Parents
The following elements are valid parents of pre: predefs.

Children
The following elements are children of pre: def.

43



Name
predefs -- Provide groups of pre-defined command options and configuration substitutions.

Description
When the developer wishes to pre-define certain options and configuration substitutions to help users by
simplifying package configuration, the predefs group is used. These sets allow the user to suggest
certain options and substitutions for common installation cases. For example, the developer may define
pre-defined sets for x86 Linux and Solaris.

Parents
The following elements are valid parents of predefs: header.

Children
The following elements are children of predefs: pre.

Example

Example 17. Predef and Def Example

Example still to be written.

44



Name
preparation -- The 1st of the 5 steps to installing a package.

Description
This is the 1st of the 5 steps to installing a package, occuring before configuration. Commands that re-
late to compiling the contained software should be done in this step.

Parents
The following elements are valid parents of preparation: package.

Children
The following elements are children of preparation: command.

45



Name
sub -- Defines a substitution that will be made in a configuration file.

Description
This element maps a substitution in a configuration file. This substitution is only relevant to the file
defined by the parent configfile tag.

Attributes

• name (required) - The token that will be substituted in the file. This token should not contain any
spaces or special characters.

• description (recommended) - A description of what this particular substitution does in the configura-
tion file.

• format (optional) - This parameter is used to validate that the input is of the proper form. This is not
currently supported by ReST.

• default (required) - The default value is this substitution is not customized.

• type (required) - What type of substitution is this? Valid types are string (one line of text), option
(chosen from a list), text (multiple lines of text), boolean (true/false).

• truevalue (required if type=boolean) - The value to subsitute if type is boolean and true is selected.
This can contain an empty string.

• falsevalue (required if type=boolean) - The value to subsitute if type is boolean and false is selected.
This can contain an empty string.

• choices (required if type=choice) - A comma separated list of possbile choices for this substitution.

• customChoice (optional) - If the type is choice and this attribute is set to true then the user may
choose from the list of options or give their own value for this substitution. If this attribute is false or
not declared, the user is restricted to the given choices.

Parents
The following elements are valid parents of sub: configfile.

Children
The following elements are children of sub: No Children.

Example
See configfile for an example of how to use this tag.

46



Name
title -- The title the will appear in the ReST applications for this package.

Description
The title the will appear in the ReST applications for this package. If the title is longer than 32 characters
long (including spaces), an additional short title should be provided.

Atrributes

• role (optional) - If this is some special title, like a short title, what role does it serve? By default the
ReST applications only support role short, but other roles may be added.

Parents
The following elements are valid parents of title: header.

Children
The following elements are children of title: No Children.

47



Name
uninstallation -- An option additional step to define how to uninstall a package.

Description
This is the an optional step the defines how to uninstall a package. Commands that relate to deleting the
contained software should be done in this step.

Parents
The following elements are valid parents of uninstallation: package.

Children
The following elements are children of uninstallation: command.

48



Name
uri -- A standard URI that may be used to provide more information about a package or package au-
thor.

Description
A standard URI that may be used to provide more information about a package or package author. This
may include a mailto URI.

Parents
The following elements are valid parents of uri: header, packager.

Children
The following elements are children of uri: No Children.

49



Name
version -- Give the version of packaged software.

Description
The version of the software included in this package. This should be the software version and not a ver-
sion for the ReST package itself. The optional version attribute of package should be used instead to
give a version of the ReST package, if desired.

Parents
The following elements are valid parents of version: header.

Children
The following elements are children of version: No Children.

50



Complete Package XML

51



Name
Complete Package XML Example -- Show the complete XML of a package.

Complete Package XML

Example 18. Example Package XML

<?xml version="1.0" encoding="UTF-8"?>
<package xmlns="http://icl.cs.utk.edu/ReST/Package/1.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://icl.cs.utk.edu/ReST/Package/1.0

http://icl.cs.utk.edu/rest/restpackage-1_0.xsd">

<!-- Basic information about the software package -->
<header>
<title>NetSolve Installer</title>
<base>NetSolve</base>
<version>2.0</version>
<description>NetSolve is a grid middleware package</description>
<uri>http://icl.cs.utk.edu/netsolve/</uri>

<!-- Basic information about the packager -->
<packager>

<name>Jeff M. Larkin</name>
<uri>mailto:larkin@cs.utk.edu</uri>

</packager>

<actions>
<action name="Start Server" tooltip="Start a NetSolve server.">
<command value="/bin/bash ./start_server.sh" statusmsg="Starting Server"

errormsg="Failed to start server."/>
</action>
<action name="Kill Server" tooltip="Kill a NetSolve server.">
<command value="/bin/bash ./kill_server.sh" statusmsg="Killing Server"

errormsg="Failed to kill server."/>
</action>
<action name="Restart Server" tooltip="Restart a NetSolve server.">
<command value="/bin/bash ./kill_server.sh" statusmsg="Killing Server"

errormsg="Failed to kill server."/>
<command value="/bin/bash ./start_server.sh" statusmsg="Starting Server"

errormsg="Failed to start server."/>
</action>
<action name="Start Agent" tooltip="Start a NetSolve Agent.">
<command value="/bin/bash ./start_agent.sh" statusmsg="Starting Agent"

errormsg="Failed to start Agent"/>
</action>
<action name="Kill Agent" tooltip="Kill a NetSolve Agent.">
<command value="/bin/bash ./kill_agent.sh" statusmsg="Killing Agent"

errormsg="Failed to kill Agent"/>
</action>
<action name="Restart Agent" tooltip="Restart a NetSolve Agent.">
<command value="/bin/bash ./kill_agent.sh" statusmsg="Killing Agent"

errormsg="Failed to kill Agent"/>
<command value="/bin/bash ./start_agent.sh" statusmsg="Starting Agent"

errormsg="Failed to start Agent"/>
</action>

</actions>

<configfile packagefile="server_config"
remotefile="NetSolve-2.0/server_config"
description="NetSolve Server Configuration File">

<sub name="nproc" description="Number of processors"
default="2" type="string"/>

<sub name="agent" description="The NetSolve Agent hostname"
default="netsolve.cs.utk.edu" type="string"/>

<sub name="scratch" description="Scratch Directory"
default="/tmp/" type="string"/>

<sub name="mpihosts" description="Number of MPI Hosts"
default="4" type="string"/>

52



<sub name="workloadmax" description="Maximum allowable workload"
default="-1" type="string"/>

<sub name="testing" description="Testing PDF"
truevalue="" falsevalue="#" type="boolean" default="true"/>

<sub name="qsort" description="QuickSort PDF"
truevalue="" falsevalue="#" type="boolean" default="true"/>

<sub name="area" description="Area PDF"
truevalue="" falsevalue="#" type="boolean" default="true"/>

<sub name="mandelbrot" description="Mandelbrot PDF"
truevalue="" falsevalue="#" type="boolean" default="true"/>

<sub name="blas_subset" description="BLAS Subset PDF"
truevalue="" falsevalue="#" type="boolean" default="true"/>

<sub name="lapack_subset" description="LAPACK Subset PDF"
truevalue="" falsevalue="#" type="boolean" default="true"/>

<sub name="lapack" description="LAPACK PDF"
truevalue="" falsevalue="#" type="boolean" default="false"/>

<sub name="lapack_extended" description="LAPACK Extended Drivers PDF"
truevalue="" falsevalue="#" type="boolean" default="false"/>

<sub name="scalapack" description="SCALAPACK PDF"
truevalue="" falsevalue="#" type="boolean" default="false"/>

<sub name="sparse_iterative_solve" description="Sparse Iterative Solvers PDF"
truevalue="" falsevalue="#" type="boolean" default="false"/>

<sub name="sparse_direct_solve" description="Sparse Direct Solvers PDF"
truevalue="" falsevalue="#" type="boolean" default="false"/>

<sub name="arpack" description="ARPACK PDF"
truevalue="" falsevalue="#" type="boolean" default="false"/>

<sub name="testingglobus" description="Globus Testing PDF"
truevalue="" falsevalue="#" type="boolean" default="false"/>

<sub name="restrictions" description="Maximum allowable workload"
default="" type="text">* 10</sub>

</configfile>
<configfile packagefile="MPImachines"

remotefile="NetSolve-2.0/MPImachines"
description="NetSolve MPI Hosts File">

<sub name="hosts" description="List of MPI Hosts" type="text" default="">
enterprise
enterprise
enterprise
enterprise

</sub>
</configfile>
<configfile packagefile="netsolve.env"

remotefile="netsolve.env"
description="NetSolve Environment Variables">

<sub name="agent" description="NetSolve Agent"
default="netsolve.cs.utk.edu" type="string"/>

</configfile>
<!-- Package source(s). We can do both remote and local files -->
<packagesrc>NetSolve-2.0.tgz</packagesrc>
<packagesrc>config.guess</packagesrc>
<packagesrc>start_server.sh</packagesrc>
<packagesrc>start_agent.sh</packagesrc>
<packagesrc>kill_agent.sh</packagesrc>
<packagesrc>kill_server.sh</packagesrc>

<installerattributes>
<backgroundimage>http://www.cs.utk.edu/~meek/icl/GSAP/netsolve_bg.png</backgroundimage>
<icon>http://icl.cs.utk.edu/favicon.ico</icon>

</installerattributes>
</header>

<!-- Things to do before anything else -->
<preparation>
<command value="gunzip -f NetSolve-2.0.tgz" grouped="true"/>
<command value="tar -xf NetSolve-2.0.tar" grouped="true"/>
<command value="cd NetSolve-2.0/" grouped="false"/>

</preparation>

<!-- Configuration of the package before compilation -->
<configuration>
<!-- This is the configure line -->
<command value="./configure" grouped="true">

<!-- One of the possible configure options -->
<option name="lapack" type="text" default="/usr/local/lib/libpack.a"

truevalue="--with-lapack="/>
<option name="blas" type="text" default="/usr/local/lib/libblas.a"

truevalue="--with-blaslib="/>
<option name="petsc" type="text" default=""

truevalue="--with-petsc="/>
<option name="petsclibdir" type="text" default=""

Complete Package XML Example

53



truevalue="--with-petsclibdir="/>
<option name="aztec" type="text" default=""

truevalue="--with-aztec="/>
<option name="azteclib" type="text" default=""

truevalue="--with-azteclib="/>
<option name="superlu" type="text" default=""

truevalue="--with-superlu="/>
<option name="superlulib" type="text" default=""

truevalue="--with-superlulib="/>
<option name="ma28" type="boolean" default="false"

truevalue="--with-ma28"/>
<option name="itpack" type="boolean" default="false"

truevalue="--with-itpack"/>
<option name="arpacklib" type="text" default=""

truevalue="--with-arpacklib="/>
<option name="mpi" type="text" default=""

truevalue="--with-mpi=" falsevalue="--without-mpi"/>
<option name="scalapack" type="text" default=""

truevalue="--with-scalapacklib="/>
<option name="blacslib" type="text" default=""

truevalue="--with-blacslib="/>
<option name="mldk" type="text" default=""

truevalue="--with-mldk="/>
<option name="rpclib" type="text" default=""

truevalue="--with-rpclib="/>
<option name="rpcinc" type="text" default=""

truevalue="--with-rpcinc="/>
<option name="octave-include" type="text" default=""

truevalue="--with-octave-include="/>
<option name="gpg" type="text" default="/usr/bin/gpg"

truevalue="--with-gpg=" falsevalue="--without-gpg"/>
<option name="buildgpg" type="text" default=""

truevalue="--with-buildgpg="/>
<option name="nws" type="text" default=""

truevalue="--with-nws="/>
<option name="ibp" type="text" default=""

truevalue="--with-ibp="/>
<option name="kerberos" type="text" default=""

truevalue="--with-kerberos"/>
<option name="proxy" type="choice" choices="nestolve,globus" default=""

truevalue="--with-proxy "/>
<option name="ouputlevel" type="choice" choices="debug,view,none" default="none"

truevalue="--with-outputlevel "/>
<option name="infoserver" type="text" default=""

truevalue="--enable-infoserver"/>
</command>

</configuration>

<!-- Source Compilation -->
<compilation>
<command value="make" grouped="true">

<option type="boolean" truevalue="standard" name="Standard" enabled="true"/>
<option type="boolean" truevalue="all" name="All"/>
<option type="boolean" truevalue="server" name="Server"/>
<option type="boolean" truevalue="agent" name="Agent"/>
<option type="boolean" truevalue="C" name="C"/>
<option type="boolean" truevalue="Fortran" name="Fortran"/>
<option type="boolean" truevalue="matlab" name="Matlab"/>
<option type="boolean" truevalue="octave" name="Octave"/>
<option type="boolean" truevalue="mathematica" name="Mathematica"/>
<option type="boolean" truevalue="gridrpc" name="GridRPC"/>
<option type="boolean" truevalue="pdfgui" name="PDF Gui"/>
<option type="boolean" truevalue="tools" name="Tools"/>
<option type="boolean" truevalue="wrappers" name="Wrappers"/>
<option type="boolean" truevalue="tester" name="Tester"/>
<option type="boolean" truevalue="regress" name="Regression Test Suite"/>
<option type="boolean" truevalue="clean" name="Clean"/>
<option type="boolean" truevalue="configclean" name="Configclean"/>
<option type="boolean" truevalue="CLEAN" name="Clean every architecture"/>

</command>
</compilation>

<!-- Package Installation -->
<installation>
<!--<command value="make install"/>-->

</installation>

<!-- Clean-up what is no longer needed -->
<completion>
<command value="cd ../"/>

Complete Package XML Example

54



<command value="rm -rf NetSolve-2.0.tar" grouped="true"/>
<command value="rm -rf NetSolve-2.0.tgz" grouped="true"/>

</completion>

</package>

Complete Package XML Example

55


