
ReST Packager's Guide

An introduction to creating ReST packages.

Eric T Meek, Innovative Computing Laboratory, UT <meek@cs.utk.edu>
Jeff M Larkin, Innovative Computing Laboratory, UT <larkin@cs.utk.edu>

ReST Packager's Guide: An introduction to creating ReST pack-
ages.
by Eric T Meek and Jeff M Larkin

Abstract

The most important aspect of creating any software package is distributing it in an uncomplicated and unified man-
ner. However, creating robust software packages which are uncomplicated requires much planning. Using the ReST
Packager, however, lessens the burden of pre-planning by providing a step-by-step wizard breaking down package
creation into manageable sections. Each section has extensive documentation regarding the purpose of each feature
and has color coded fields which show which are required and which are optional. Each feature has helpful tooltips
providing a quick reminder of how to use it. It should be noted not all features available in the Packager are imple-
mented in the Installer. However, filling out each feature available in the packager ensures completeness and com-
patibility with future versions of ReST. Essentially, the ReST Packager serves as a guide through the difficult pro-
cess of creating robust ReST packages. This, in-turn, guides users though installing the software just packaged in a
unified manner both in remote heterogeneous and future supported installation environments.

Draft Draft

Draft Draft

Table of Contents
1. ReST Package Basics ... 1

The Package Structure ... 1
Planning .. 1

2. The Packager GUI ... 2
The Package Header .. 2
Configuration Files .. 4
The Package Files ... 7
The Package Commands ... 7
Creating the commands .. 8

The 6 Steps .. 9
Package Commands ... 9
Command Options .. 10
Actions ... 12

3. Creating and using the package file ... 14
4. Conclusions .. 15
I. Package XML Elements .. 16

action .. 17
actions .. 18
backgroundcolor .. 19
backgroundimage .. 20
base .. 21
checksumuri .. 22
command .. 23
compilation .. 25
completion .. 26
configfile .. 27
configuration .. 29
def .. 30
description .. 31
explorerattributes .. 32
header .. 33
icon .. 35
info .. 36
infouri .. 37
installation .. 38
installerattributes .. 39
license .. 40
licenseuri .. 41
monitorattributes .. 42
name .. 43
option .. 44
package .. 46
packagedir .. 47
packager .. 48
packagesrc .. 49
patch .. 50
pre .. 51
predefs .. 52
preparation .. 53
sub .. 54
title .. 55
uninstallation .. 56
uri .. 57

Draft Draft

iv

version .. 58
II. Complete Package XML ... 59

Complete Package XML Example .. 60

Draft ReST Packager's Guide Draft

v

List of Figures
2.1. Create Header ... 2
2.2. Select Configuration Files ... 4
2.3. Configuring Substitutions ... 5
2.4. Configuring Substitutions ... 6
2.5. Adding Files ... 7
2.6. Command Sections .. 8
2.7. A Package Command ... 9
2.8. A Package Command Option ... 10
2.9. The Action Setup Panel .. 12
2.10. The Action Command Option Setup Panel .. 12

Draft Draft

vi

List of Examples
2.1. Boolean Substation .. 6
2.2. The 6 Steps .. 9
2.3. Command Option XML .. 11
2.4. Package Actions XML ... 13
3.1. Running the ReST Packager. ... 14
3.2. Installing a Package ... 14
7. Action Example ... 17
8. Actions Example ... 18
9. Command Example .. 24
10. Configfile XML Example .. 27
11. Sample Configuration File Stub .. 27
12. Package Header Example .. 33
13. License Example .. 40
14. Licenseuri Example .. 41
15. Predef and Def Example .. 52
16. Example Package XML ... 60

Draft Draft

vii

Chapter 1. ReST Package Basics
Although used primarily by the ReST Installer, ReST packages are the means by which the ReST Application Suite
is customized for individual pieces of software. The ReST package contains the software and metadata needed by
the Installer to install software on remote machines. The package metadata is used by the Installer and Explorer to
maintain the state of installed software and in future versions of ReST it will contain information needed to custom-
ize the Monitor to work with the installed packages. In order to produce a well-written package it is important to un-
derstand what is contained in the package and what conventions are expected by the ReST Suite.

The Package Structure
A ReST package is essentially a ZIP/JAR file containing two special files, a package XML file and a checksum file.
The package XML file, name package.xml inside the package, contains both basic metadata about the package and
instructions on how to install the package from source or pre-compiled binaries. The checksum file, at this time must
be created by the ReSTPackager program contains checksums of each file within the package and is must pass be-
fore the Installer will run the package. Details about the package sources are not necessary, since they could be any
file that is pertinent to the software being installed. Details about writing the package XML, including documenta-
tion of each XML tag, and creating the package file appear later in this document.

It is possible to extract the package.xml file from the package using the jar utility supplied with the Sun JDK. The
simplest means of extracting the package.xml is with the command jar -xvf <package name> package.xml. If you
would like to extract the remainder of the contents, simply leave the package.xml off the end of the command. For
more information see the Package Makers guide in the ReST online documentation section.

Planning
The planning step is the most important part in successfully creating a working package. Before writing the XML
create a step-by-step list of how the software is installed. If possible, walk through the installation in a clean /
bin/bash environment, since this will more realistically reflect the environment in which ReST will install the soft-
ware. Once this list has been written, place a mark next to each command that would not need to be run on every
machine in an homogeneous environment with a shared filesystem. Now note command options that should be
offered for each command, for example ./configure --with-foo. Try installing the software by walking through this
list one command at a time; if it works without problem then fewer problems are likely to occur when the package is
written.

Draft Draft

1

Chapter 2. The Packager GUI
The Package Header
Upon opening the ReST packager, you will notice several distinct elements of the layout. First, the packager is built
on the same framework (ReST Wizard Framework) as the ReST Installer. Using the same framework allows the
packager to become familiar with the Wizard Framework as well as providing a simple means of walking packagers
through the complex process of creating a ReST Package. Each major section in package creation is located on an
distinct panel listed on the left side of the packager. The panel that is currently selected has an arrow on the left side
(left callout in Figure 2.1). Separating the sections into distinct panels allows packagers to better focus on each indi-
vidual section and have a firm roadmap for package creation. Each element has an associated tooltip which de-
scribes the purpose of the entry. After the packager is open, it is possible to open both ReST Packages (.rsp) and
ReST Package XML (.xml). It is important to make sure that the all of the included files listed in the package files
are accessible to the packager.

Figure 2.1. Create Header

Draft Draft

2

The common elements in all panels of the packager (cutout in regular size with the packager window in the back-
ground). Yellow dialogs denotes required entry and left panel list shows location and todo list of package creation.

There are several important tags in the above example. The titlesets the package title that will appear in the In-
staller. If the title is longer than 25 characters, a second, shorter title may be set with the roleattribute set to short.
If no short title is provided and the title is longer than 25 characters, then in space-constrained parts of the applica-
tion the long title will be truncated at 25 characters. The baseelement gives a way of grouping packages that should
be installed in a similar area. For example, packages for the LAPACK and BLAS libraries have been written with a
base of libso that they, and other libraries, will be easy to find and use. The baseshould always be set to a value
that will be valid for the filesystem on all target machines.

The contents of the versiontag should be the version on the software in the package and not the version of the
package itself. The version of the package can be given as an attribute of the packageroot element if desired. Ad-
ditional tags exist for the package header, including options for editing configuration files, added files to the pack-
age, and defining actions that can be performed once the package has been installed. All of these tags are defined
with examples in a reference sectionat the end of this document.

Draft The Packager GUI Draft

3

Configuration Files
Many software packages have configuration files that must be edited before the software can be used. To the de-
veloper of a software package writing the configuration files may be trivial, but this is often not the case for the end
user. For this reason, the ReST Installer may be used to edit configuration files for the software package. The pack-
age must include a stub configuration file with a series of tokens to substitute. Each token appears with a % charac-
ter on either side of the token, such as %token%. With a stub file created the packager must define the substitutions
for this file in the Packager.

The configuration files are a special category of package files as stated above. The configuration (config) file tokens
are substituted during transfer after all the package files are transferred and the preparation commands are com-
pleted. To add a config file to the package, browse to the files containing the tokens or type in the location and
choose import. As the files are imported, they are scanned for any tokens contained and the number of tokens is dis-
played in the tokens column. Double clicking on a row or right clicking on it and selecting view will display the file
in the viewer. If a config file needs deletion, right click on the file and select remove. The complete file path can be
viewed as a tooltip by hovering the mouse cursor over the row as seen in Figure 2.2.

Figure 2.2. Select Configuration Files

Selecting configuration files is easily done using the packager.

Once all the config files have been imported into the Packager the Setup Config Files panel display's the config files
tokens needing to be setup. The configfiletag has three attributes: packagefile (the location of the stub file in

Draft The Packager GUI Draft

4

the package), remotefile (where the resulting configuration file should be placed on the remote machine), and de-
scription (a simple description for the user). Additional information about the configfileand subtags, including
additional attributes to each, can be found in the reference section at the end of this document. Figure 2.3 shows the
"config" config files with four tokens titled "boolean", "string", "choice" and "text". When the Setup Config Files
panel initially loads, each config file is listed with a collapsable section containing the tokens. The first config file
initially is expanded as show for the "config" configuration file in Figure 2.3. Each token also has a collapsable sec-
tion under it, as show in Figure 2.4, with the various types of substitutions that can performed. It is important to note
the names of the tokens are very important because they are what is displayed to the user when prompting for input.

Figure 2.3. Configuring Substitutions

Setting-up the configuration files substitutions

Once all the configuration files have been entered the Setup Config Files panel displays all the configuration
(config) files with an associated listing of all the config files tokens. Each config file token also has a collapsable
section allowing for selecting the type of substitution and setting up the token. Every token requires several common
inputs, Type, Description and Default. The substitution type determines what the installer displays for input.
Boolean displays a checkbox with the associated token name. String displays a single line text input box. Choice
displays a drop-down box, similar to the box for Type, that can be made editable by the packager by selecting the
appropriate checkbox. The choice values are input in a comma delimited list and may contain spaces. The final sub-
stitution type is text. The text area allows for substitutions to be made containing special characters such as tabs and
newlines. As with all components, any field with a yellow background signifies required field for the specific substi-
tution type.

Draft The Packager GUI Draft

5

Figure 2.4. Configuring Substitutions

Types of configuration files substitutions

In the previous two figures (2.4 and 2.5) only four substitutions are made ReST, however, will handle as many sub-
stitutions as are needed. Each of the four substations represents a type of substitution supported by ReST ,
string(no more than one line of text), text(multiple lines of text), choice(a defined set of choices, much like
available for command options) and boolean (a checkbox defining if a predefined substitution should take place).
Each substitution type is useful for different types of substitutions. For example, boolean substitutions are useful
when a single line needs to be commented or uncommented. This could be done by the following example

Example 2.1. Boolean Substation

#Uncomment the next line to enable 3D mode %Enable 3D
Mode%enable-opengl

The token is "Enable 3D Mode" and the most useful substitution type would be boolean. With the boolean type se-
lected, two new fields are displayed, true value and false value. The user is displayed a checkbox when setting up
the config file. If Default is set to "true" then the default substitution made is with the true value, otherwise, the false
value is used for the substitution. So, if the true value is set to "" and the false value is "#", the user can change the

Draft The Packager GUI Draft

6

value easily in a familiar way but clicking on a check box followed by "Enable 3D Mode".

The boolean substitution has the most complex substitution usage available in ReST. The other substitutions have
less options available and are therefore less complex in their usage. The types of substitutions that are not boolean
all have a default value. If no user customized value is provided then the default it substituted when the substitution
takes place for all types except boolean.

The Package Files

Figure 2.5. Adding Files

Adding files to the package

Adding files to the packages is very similar to adding config files except all the files in a directory can be added by
selecting the containing dir. Package files are transferred before any of the package commands are executed. All of
the package files are placed in the directory that package working directory. This provides the packager a common
experience when creating packages and working with the package files.

The Package Commands

Draft The Packager GUI Draft

7

Figure 2.6. Command Sections

The six command sections

Commands in the package are broken into six steps, which simply provide a logical grouping of the commands that
are run. The six steps as seen in Figure 2.6, in order, are Preparation, Configuration, Compilation, Installation,
Completion, and Uninstallation, with the last grouping actually optional. Commands that need to be run first, before
anything else can happen, such as extracting archives or creating directories should be placed in the preparation step.
Package sources will be sent to the remote machine and package directories will be created prior to this step. Any-
thing pertaining to configuring the software, such as running a configure script should be placed in the configura-
tion step. Configuration files included in the package will be sent to the remote machine between these first two
steps. Commands related to compiling and installing the package should be placed in the next two steps respect-
ively. During the completion step the packager should clean up the build area however possible, such as deleting un-
needed sources that remain. Lastly, if a packager would like to provide a means for automatically uninstalling their
software, commands pertaining to this should be placed in the uninstallation step. Each step is essentially equal, but
provides a logical way of organizing the package. Packagers are encouraged to group their commands using these
logical step. Every step except the uninstallation step must be in the package XML, but may be empty if not needed.

Creating the commands
The sections below will provide an overview of how to write a package XML file. For more detailed information
about the XML tags, including advanced attributes, please see the reference section at the end of this document.

Draft The Packager GUI Draft

8

The 6 Steps
As explained earlier, all commands for installing and uninstalling a package are organized into six logical steps:
preparation, configuration, compilation, installation, completion, and
uninstallation. The uninstallationstep is optional, but recommended. These steps are essentially equal,
except that configuration files are sent to the remote machine between the preparationand
configurationsteps. It is highly recommended that packagers take advantage of the six steps for logically
grouping the package commands. Future version of the the ReST suite may contain optimizations or changes in the
handling of these steps and forward compatibility is best ensured by using these steps. Below is an example of the
six steps appearing in the package xml as seen in Figure 2.6.

Example 2.2. The 6 Steps

<preparation> <command value="tar -xf
example.tar"> <command value="cd example/">
</preparation> <configuration> <command
value="./configure --prefix=$PWD">
</configuration> <compilation> <command
value="make all"> </compilation>
<installation> <command value="make install">
</installation> <completion> <command
value="make clean"> <command value="cd ..; /bin/rm -f
example.tar"> </completion> <uninstallation>
<command value="cd example"> <command value="make
uninstall"> <command value="cd ..; /bin/rm -rf
example/"> </uninstallation>

Package Commands
Package commands makeup the heart of rest packages. Commands are run in the bash shell and as seen in Figure 2.7
have several attributes. The most important attribute is the command value. The command value is that actual com-
mand that will be executed. Options for the command may be included in the command value but are better left as a
command option included with the command. The description is the next most important value showing up as a
tooltip when the Installer user modifies the command. It allows the packager to provide further information to the
user as to the purpose of the command and what the user might decide to do with the command. The Command ID
will be automatically generated by the packager, but should be customized for better interoperability with the In-
staller scripting mechanism and upcoming features of the ReST Tool Suite. The error message is displayed to the
user associated with the machine the command failure occurred. The status message is displayed on the machine the
command is running.

Figure 2.7. A Package Command

Draft The Packager GUI Draft

9

A package command

Command Options
Some commands may need to be configured by the user before they are run on the remote machine. For that reason
the ReST XML allows commandtags to contain optiontags. The optiontags define command-line arguments
for a given command and can be configured by end users. A good example of a command that will likely contain
options is the ./configurescript, which is included in many source distributions. It is common for this command
to have many different command line options for properly configuring the build process. Below is an example of the
./configurecommand with options.

Figure 2.8. A Package Command Option

Draft The Packager GUI Draft

10

The package command option configuration GUI

Example 2.3. Command Option XML

<command value="./configure" grouped="true">
<option name="foo" type="text"
default="/usr/local/lib/libfoo.a"
truevalue="--with-libfoo="/> <option name="bar"
type="boolean" default="false" truevalue="--with-libbar"
falsevalue="--without-libbar"/> <option
name="ouputlevel" type="choice" choices="debug,view,none"
default="none" truevalue="--with-outputlevel "/>
</command>

The above example defines three possible options for the ./configurecommand. All of the options have four
common attributes: name, type, default, and truevalue. The name attribute is exactly what would be expected, the
name that the user will see when configuring this option. The type attribute may be either string, boolean, or
choice. The default attribute defines what the value should be by default, which is required for installation in
simple mode. Finally the truevalue attribute defines what is appended to the command if the option is enabled or if a
option of type boolean is selected. For example, if option foois enabled and the default value is left untouched the
resulting string --with-libfoo=/usr/local/lib/libfoo.awill be appended to the command. Packagers
are encouraged to expose all possible command-line options to the users through ReST as the packager is more
knowledgeable about the software included than the user. Additional information about the optiontag can be
found in the reference section at the end of this document.

Draft The Packager GUI Draft

11

Actions
ReST actions are commands that exist on systems after a software package has been installed. For a piece of server
software, for example, this could include starting, stopping, and restarting the server. An actionis simply a wrap-
per around one or more commandtags, much like each of the six steps described above, except that the actiontag
requires a name for the action. Actions can be run by the ReST Installer immediately after installation is complete or
by the ReST Explorer at any time after package installation. Below are pictures of the Action setup GUI and an
XML example of a package action.

Figure 2.9. The Action Setup Panel

Important elements of the action panel

To add an Action to the package, click on the + button on the top right next to the "Actions" label (Figure 2.9). This
will add an action to the list below the actions label. The action attributes can be set in the form to the right of the
Actions + and - buttons. All value of the action, Name, ID, Tooltip and Description should be entered. Added com-
mands to and actions is done the same way as to the six command sections and the action commands may also have
command options that are also added in the same manner as in the "Setup Commands" panel (see Figure 2.10).

Figure 2.10. The Action Command Option Setup Panel

Draft The Packager GUI Draft

12

Action Command option setup

Example 2.4. Package Actions XML

<actions> <action name="Start Server"
tooltip="Start a server."> <command value="/bin/bash
./start_server.sh" statusmsg="Starting Server"
errormsg="Failed to start server."/> </action>
<action name="Kill Server" tooltip="Kill a server.">
<command value="/bin/bash ./kill_server.sh"
statusmsg="Killing Server" errormsg="Failed to kill
server."/> </action> <action name="Restart
Server" tooltip="Restart a server."> <command
value="/bin/bash ./kill_server.sh" statusmsg="Killing
Server" errormsg="Failed to kill server."/> <command
value="/bin/bash ./start_server.sh" statusmsg="Starting
Server" errormsg="Failed to start server."/>
</action> </actions>

Draft The Packager GUI Draft

13

Chapter 3. Creating and using the
package file
In the graphical packager simply select "File->Save". From the command line it is a little more complicated. Once
the package XML has been written, stub configuration files have been created and source files have been gathered, it
is time to combine all of the files into a ReST package. Part of the ReST suite is the ReST Packager utility. This util-
ity combines all of the necessary files into one package for easy distribution. Below is an example of how the ReST
Packager is used.

Example 3.1. Running the ReST Packager.

> java -jar ReSTPackager.jar -X examplepackage.xml
-f example.rsp file1 file2 stub.cfg

In the above example, the user has run the ReST Packager, which is included in the ReST suite to create a package
named example.rsp. The -Xargument tells the ReST Packager to use examplepackage.xmlas the package
XML file for this package. The -fargument tells the packager the name of the file to create. The remaining argu-
ments tell the Packager which files to include. Every file that is declared in the package.xml must be included in the
Packager arguments. The resulting file can be distributed by whatever means desired and used with the ReST In-
staller.

Once the package file is created, it simply needs to be installed from the ReST Installer. To install the package, run
the ReST Installer with the name of the package as an argument. The package can be local or placed on a web serv-
er, although larger packages will run more quickly if they are local. Here is an example of our package being used
by the ReST Installer.

Example 3.2. Installing a Package

> java -jar ReSTInstaller.jar example.rsp

Draft Draft

14

Chapter 4. Conclusions
The ReST package specification was designed to give packagers a flexible system for creating an application in-
staller for their software. This document should have given you the basic knowledge needed to build a package for
your software. More detailed information about the ReST package XML, including a full example can be found in
the reference pages of this document. For questions about ReST and to provide feedback or suggestions, please feel
encouraged to e-mail the authors of this document.

Draft Draft

15

Package XML Elements

Draft Draft

16

Name
action -- Commands that can be run after a package has been installed.

Description
Once a package has been installed there may be some commands that a user will be able to run. ReST calls these
commands "actions" and allows them to be run in the Installer immediately after an installation or by the Explorer at
any time after the package has been installed.

Atrributes

• name (required) - How the action should be known

• tooltip (required) - This will appear as a tooltip in the ReST applications

• id (optional) - A unique id for this action within the package. This is only needed if there are dependencies
between actions.

• depends (optional) - A comma-separated list of action ids on which this action depends.

Parents
The following elements are valid parents of action: actions.

Children
The following elements are children of action: command.

Example

Example 7. Action Example

<action name="Start Server" tooltip="Start a server.">
<command value="/bin/bash ./start_server.sh" statusmsg="Starting Server"

errormsg="Failed to start server."/>
</action>

Draft Draft

17

Name
actions -- Wrapper element for multiple action elements.

Description
This element appears in the ReST package header and contains 1 or more action elements.

Parents
The following elements are valid parents of actions: header.

Children
The following elements are children of actions: action.

Example

Example 8. Actions Example

<actions>
<action name="Start Server" tooltip="Start a server.">
<command value="/bin/bash ./start_server.sh" statusmsg="Starting Server"

errormsg="Failed to start server."/>
</action>
<action name="Kill Server" tooltip="Kill a server.">
<command value="/bin/bash ./kill_server.sh" statusmsg="Killing Server"

errormsg="Failed to kill server."/>
</actions>

Draft Draft

18

Name
backgroundcolor -- Declare the background color that should be used in the ReST applications when referen-
cing this package.

Description
If the backgroundcolor element appears in an application's attributes then the declared color will be used in-
stead of the default background color for applications referencing this package. The color should be given in hex
notation as would be given in HTML code.

Parents
The following elements are valid parents of backgroundcolor: explorerattributes, installerat-
tributes, monitorattributes.

Children
The following elements are children of backgroundcolor: No Children.

Draft Draft

19

Name
backgroundimage -- Declare the background image that should be used in the ReST applications when referen-
cing this package.

Description
If the backgroundimage element appears in an application's attributes then the given image will appear as a wa-
termark in the background of ReST applications as they refernce this package. The image could be included in the
ReST package or reference an image that appears in a web space.

Parents
The following elements are valid parents of backgroundimage: explorerattributes, installerat-
tributes, monitorattributes.

Children
The following elements are children of backgroundimage: No Children.

Draft Draft

20

Name
base -- Gives the base directory for this package.

Description
By defining a base directory for a package, multiple packages can be organized to share a common space. This is
useful for organizing libraries, which can be given a base of libs, or software packages that include several plugable
or optional components that may be installed at a later time.

Parents
The following elements are valid parents of base: header.

Children
The following elements are children of name: No Children.

Draft Draft

21

Name
checksumuri -- Give the uri to a file that contains the checksum for this package.

Description
When a package is created with the ReST packager a checksum is printed, which can be placed in a file on a web-
space. This element points to such a file to give the ReST application the ability to verify the package before using
it. This behavior is optional. ReST packages already contain checksums of the files contained, which are verified
when a package is used; package checksums are in addition to this behavior. At the current time checksumuri is
not supported, but will be added to future versions of ReST.

Attributes

• forcechecksum - If set to true, ReST applications will not accept a package that does to match the given check-
sum. If set to false, the application will simply warn that the checksum does not match. If forcechecksum does
not appear, false is assumed.

Parents
The following elements are valid parents of chucksumuri: header.

Children
The following elements are children of chucksumuri: No Children.

Draft Draft

22

Name
command -- Run a command on the remote system.

Description
The command tag declares a single command to be run on the remote system. By default this command is run in a /
bin/bash environment and commands should be written with this in mind. A command contains 0 or more op-
tion tags, allowing the command to be configured from the ReST application's GUI.

Attributes

• value (required) - The command to be run.

• shell (optional) - The shell in which to run the command. At this time shell is not supported, but support will
be added in future versions of ReST.

• required (optional) - If the user should be given the option to not run this command, required should be set to
false. If required is not given, the command will be run.

• grouped (optional) - If running the command on one machine in a given logical group is sufficient, set
grouped="true", if grouped is not given or grouped="false" the command will be run on every ma-
chine in the logical group.

• id (optional) - A unique id given to this command, which is used if command dependencies exist. Dependencies
are not supported at this time.

• depends (optional) - A comma-separated list of ids on which this command depends. Dependencies are not sup-
ported at this time.

• errormsg (optional) - A short message that should be displayed as the status of a given location if the command
fails.

• statusmsg (optional) - A short message that will be displayed as the status of a given location as it runs a com-
mand.

• description (optional) - A description of the command, used to help users understand the commands as they are
configured.

• forceConfigure (optional) - By default command options are only configured in Advanced Mode for a given
ReST application. However, if a given command must be configured, set forceConfigure="true".

Parents
The following elements are valid parents of command: action, compilation, completion, configura-
tion, installation, preparation, uninstallation.

Children
The following elements are children of command: option.

Draft Draft

23

Example

Example 9. Command Example

<command value="make" grouped="true">
<option type="boolean" truevalue="standard" name="Standard" enabled="true"/>
<option type="boolean" truevalue="all" name="All"/>
<option type="boolean" truevalue="server" name="Server"/>
<option type="boolean" truevalue="agent" name="Agent"/>
<option type="boolean" truevalue="C" name="C"/>
<option type="boolean" truevalue="Fortran" name="Fortran"/>
<option type="boolean" truevalue="matlab" name="Matlab"/>
<option type="boolean" truevalue="octave" name="Octave"/>
<option type="boolean" truevalue="mathematica" name="Mathematica"/>
<option type="boolean" truevalue="gridrpc" name="GridRPC"/>
<option type="boolean" truevalue="pdfgui" name="PDF Gui"/>
<option type="boolean" truevalue="tools" name="Tools"/>
<option type="boolean" truevalue="wrappers" name="Wrappers"/>
<option type="boolean" truevalue="tester" name="Tester"/>
<option type="boolean" truevalue="regress" name="Regression Test Suite"/>
<option type="boolean" truevalue="clean" name="Clean"/>
<option type="boolean" truevalue="configclean" name="Configclean"/>
<option type="boolean" truevalue="CLEAN" name="Clean every architecture"/>

</command>

Draft command Draft

24

Name
compilation -- The 3rd of the 5 steps to installing a package.

Description
This is the 3rd of the 5 steps to installing a package, occuring after configuration and before installation. Commands
that relate to compiling the contained software should be done in this step.

Parents
The following elements are valid parents of compilation: package.

Children
The following elements are children of compilation: command.

Draft Draft

25

Name
completion -- The 5th of the 5 steps to installing a package.

Description
This is the 5th of the 5 steps to installing a package, occuring after installation. Commands that must be run after a
package is installed or relate to cleaning up the build area, such as removing unneeded files should be placed in this
step.

Parents
The following elements are valid parents of completion: package.

Children
The following elements are children of completion: command.

Draft Draft

26

Name
configfile -- Declare a file that must be configured by the user.

Description
A package may contain configuration files for the packaged software. These files will be configured from the GUI
by the user. The configfile will contain several sub tags, which define tokens that will be replaced in the file.

Attributes

• packagefile (required) - The name of the file as it is contained in the package.

• remotefile (required) - The name of the file as it should be on the remote system. This can be a relative pathname
(ex. src/file.conf).

• description (optional) - A description of the file's purpose or conventions.

• forceConfigure (optional) - If forceConfigure="true" the user will be required to edit the file, even if
they are not in Advanced Mode in the ReST application. If forceCongfigure is not declated or force-
Configure="false" the defaults will be used for all substitutions.

Parents
The following elements are valid parents of configfile: header.

Children
The following elements are children of configfile: sub.

Example

Example 10. Configfile XML Example

<configfile packagefile="server_config"
remotefile="NetSolve-2.0/server_config"
description="NetSolve Server Configuration File">

<sub name="nproc" description="Number of processors"
default="2" type="string"/>

<sub name="agent" description="The NetSolve Agent hostname"
default="netsolve.cs.utk.edu" type="string"/>

<sub name="scratch" description="Scratch Directory"
default="/tmp/" type="string"/>

<sub name="mpihosts" description="Number of MPI Hosts"
default="4" type="string"/>

<sub name="workloadmax" description="Maximum allowable workload"
default="-1" type="string"/>

</configfile>

Example 11. Sample Configuration File Stub

Draft Draft

27

@PROC:%nproc%
@AGENT:%agent%
@WORKLOADMAX:%workloadmax%
@SCRATCH:%scratch%
@MPIHOSTS ./MPImachines %mpihosts%

Draft configfile Draft

28

Name
configuration -- The 2nd of the 5 steps to installing a package.

Description
This is the 2nd of the 5 steps to installing a package, occuring after preparation and before compilation. Commands
that relate to configuration for compilation (such as running configure scripts) should be done in this step. Con-
figuration files are sent to the remote location immediately before this step.

Parents
The following elements are valid parents of configuration: package.

Children
The following elements are children of configuration: command.

Draft Draft

29

Name
def -- Defines a substitution or command option in a pre set.

Description
This element is used to define a command option (if type="option") or substitution (if type="sub") within a pre set.
See predefs for a usage example.

Attributes

• type (required) - Either option or sub, defining whether this definition is for a command option or configuration
substitution.

• ref (required) - The id of the option or substitution to which this definition refers.

Parents
The following elements are valid parents of def: pre.

Children
The following elements are children of def: No Children.

Draft Draft

30

Name
description -- Provide a description of the package.

Description
A description of the software included in this package. This description should give users an understanding of the
software's purpose.

Parents
The following elements are valid parents of description: header.

Children
The following elements are children of description: No Children.

Draft Draft

31

Name
explorerattributes -- Contains attributes to customize the look and feel of the ReST Explorer for a specific
package.

Description
Contains attributes to customize the look and feel of the ReST Explorer for a specific package.

Parents
The following elements are valid parents of explorerattributes: header.

Children
The following elements are children of explorerattributes: backgroundcolor, backgroundimage,
icon.

Draft Draft

32

Name
header -- Provide basic metadata about the package.

Description
This item contains the package metadata.

Parents
The following elements are valid parents of header: package.

Children
The following elements are children of header: action, actions, checksumuri, configfile, de-
scription, explorerattributes, info, infouri, license, licenseuri, monitorattributes,
name, packagedir, packager, packagesrc, patch, predefs, title, packager, packager.

Example

Example 12. Package Header Example

<header>
<name>NetSolve</name>
<title>NetSolve Installer</title>
<version>2.0</version>
<description>NetSolve is a grid middleware package</description>
<uri>http://icl.cs.utk.edu/netsolve/</uri>

<!-- Basic information about the packager -->
<packager>

<name>Jeff M. Larkin</name>
<uri>mailto:larkin@cs.utk.edu</uri>

</packager>

<actions>
<action name="Start Server" tooltip="Start a NetSolve server.">
<command value="/bin/bash ./start_server.sh" statusmsg="Starting Server"

errormsg="Failed to start server."/>
</action>
<action name="Kill Server" tooltip="Kill a NetSolve server.">
<command value="/bin/bash ./kill_server.sh" statusmsg="Killing Server"

errormsg="Failed to kill server."/>
</action>
</action>

</actions>

<configfile packagefile="server_config"
remotefile="NetSolve-2.0/server_config"
description="NetSolve Server Configuration File">

<sub name="nproc" description="Number of processors"
default="2" type="string"/>

<sub name="agent" description="The NetSolve Agent hostname"
default="netsolve.cs.utk.edu" type="string"/>

<sub name="scratch" description="Scratch Directory"
default="/tmp/" type="string"/>

<sub name="mpihosts" description="Number of MPI Hosts"
default="4" type="string"/>

<sub name="workloadmax" description="Maximum allowable workload"
default="-1" type="string"/>

</configfile>
<!-- Package source(s). We can do both remote and local files -->

Draft Draft

33

<packagesrc>NetSolve-2.0.tgz</packagesrc>
<packagesrc>config.guess</packagesrc>
<packagesrc>start_server.sh</packagesrc>
<packagesrc>kill_server.sh</packagesrc>

<installerattributes>
<backgroundimage>http://www.cs.utk.edu/~meek/icl/GSAP/netsolve_bg.png</backgroundimage>
<icon>http://icl.cs.utk.edu/favicon.ico</icon>

</installerattributes>
</header>

Draft header Draft

34

Name
icon -- Defines the icon to appear in the titlebar of a ReST application when referencing this ReST package.

Description
If icon is given in explorerattributes, installerattributes, monitorattributes and icon
will appear in the titlebar of the related ReST application when referencing this package.

Parents
The following elements are valid parents of icon: explorerattributes, installerattributes, mon-
itorattributes.

Children
The following elements are children of icon: No Children.

Draft Draft

35

Name
info -- Give additional information about the software contained in this package.

Description
This is an optional tag to give additional information about the software contained in the package. The tag could be
used to display the contents of a README file, for instance.

Parents
The following elements are valid parents of info: header.

Children
The following elements are children of info: No Children.

Draft Draft

36

Name
infouri -- Give a link to a text file containing additional information about the software contained in this pack-
age.

Description
This is an optional tag to give additional information about the software contained in the package. The link should
point to a text file located on a web server. The tag could be used to display the contents of a README file, for in-
stance.

Parents
The following elements are valid parents of infouri: header.

Children
The following elements are children of infouri: No Children.

Draft Draft

37

Name
installation -- The 4th of the 5 steps to installing a package.

Description
This is the 4th of the 5 steps to installing a package, occuring after compilation and before completion. Commands
that relate to installing the software in its final location should be placed in this step.

Parents
The following elements are valid parents of installation: package.

Children
The following elements are children of installation: command.

Draft Draft

38

Name
installerattributes -- Contains attributes to customize the look and feel of the ReST Installer for a specific
package.

Description
Contains attributes to customize the look and feel of the ReST Installer for a specific package.

Parents
The following elements are valid parents of installerattributes: header.

Children
The following elements are children of installerattributes: backgroundcolor, backgroundimage,
icon.

Draft Draft

39

Name
license -- Define the licensing terms of the included software.

Description
License and licenseuri give the packager a way to provide licensing information about the enclosed software. Li-
cense elements should contain the text of the license while Licenseuri is simply a link to a text file containing the li-
cense. If Licenseuri is used, the ReST application will retrieve the license file and display its contents. Both ele-
ments are optional.

Example

Example 13. License Example

<license forceaccept="true">This is the license that you must accept</license>

Parents
The following elements are valid parents of license: header.

Children
The following elements are children of license: No Children.

Draft Draft

40

Name
licenseuri -- Define the licensing terms of the included software.

Description
License and licenseuri give the packager a way to provide licensing information about the enclosed software. Li-
cense elements should contain the text of the license while Licenseuri is simply a link to a text file containing the li-
cense. If Licenseuri is used, the ReST application will retrieve the license file and display its contents. Both ele-
ments are optional.

Example

Example 14. Licenseuri Example

<licenseuri forceaccept="true">http://example.com/license.txt</license>

Parents
The following elements are valid parents of licenseuri: header.

Children
The following elements are children of licenseuri: No Children.

Draft Draft

41

Name
monitorattributes -- Contains attributes to customize the look and feel of the ReST Monitor for a specific
package.

Description
Contains attributes to customize the look and feel of the ReST Monitor for a specific package.

Parents
The following elements are valid parents of monitorattributes: header.

Children
The following elements are children of monitorattributes: backgroundcolor, backgroundimage,
icon.

Draft Draft

42

Name
name -- Gives the name of the packager.

Description
The name tag is used to provide the name of the packager. It is a generic element that could be extended for more
uses in the future.

Parents
The following elements are valid parents of name: packager.

Children
The following elements are children of name: No Children.

Draft Draft

43

Name
option -- Declares configurable options for a command.

Description
Some commands may be configurable through command-line options. Using one or more option tags within and
command allows users to customize these options via the ReST GUI.

Attributes

• name (required) - The name to appear by the option during customization.

• default (required) - The default value for this option. This is appended to the command after the truevalue (if
type is not boolean. This may be an empty string.

• type (required) - What type of substitution is this? Valid types are string (one line of text), choice (chosen from a
list), boolean (true/false).

• truevalue (required) - If type=boolean, this is the value to to append to the command. If type is not boolean then
this will be appended to the command before the value input from the user. This can be an empty string.

• falsevalue (required only if type=boolean) - The value to append if type is boolean and false is selected. This can
be an empty string.

• choices (required if type=choice) - A comma separated list of possbile choices for this option.

• customChoice (optional) - If the type is choice and this attribute is set to true then the user may choose from the
list of choices or give their own value for this option. If this attribute is false or not declared, the user is restricted
to the given choices.

• id (optional) - A unique id given to this option, which is used if option dependencies exist. Dependencies are not
supported at this time.

• depends (optional) - A comma-separated list of ids on which this option depends. Dependencies are not suppor-
ted at this time.

• enabled (optional) - If true this option will be turned on by default. If false or missing this option will be turned
off by default.

• description (optional) - A description of what this option does to the command.

Parents
The following elements are valid parents of option: command.

Children
The following elements are children of option: No Children.

Example

Draft Draft

44

See command for an example of how to use options.

Draft option Draft

45

Name
package -- The ReST Package root element.

Description
This is the root element for a ReST package.

Attributes

• version (optional) - The version of this package. This does not necessarily match the version of the software con-
tained in the package.

Parents
The following elements are valid parents of package: No Parent.

Children
The following elements are children of package: compilation, completion, configuration, header,
installation, preparation, uninstallation.

Example
See ReST Package Maker's Guide Appendix for a full package example.

Draft Draft

46

Name
packagedir -- Declare a directory within the structure of the package file.

Description
If the packager wishes to create a package that contains a directory structure, rather than a flat package, each direct-
ory inside the package must be declared with a packagedir tag.

Parents
The following elements are valid parents of packagedir: header.

Children
The following elements are children of packagedir: No Children.

Draft Draft

47

Name
packager -- Information about the person who created this ReST Package.

Description
Information about the person who created this ReST Package. This information could include name, contact inform-
ation, webpage, etc.

Parents
The following elements are valid parents of packager: header.

Children
The following elements are children of packager: name, uri.

Draft Draft

48

Name
packagesrc -- Declares a file that appears in the ReST package.

Description
Every file that is contained in a package must be declared with a packagesrc tag, configfile tag, or a patch
tag (but not multiple tags). Any other file that is contained in the package will be ignored.

Parents
The following elements are valid parents of packagesrc: header.

Children
The following elements are children of packagesrc: No Children.

Draft Draft

49

Name
patch -- Declares a patch file to be applied to the sources contained in this file. (NOT CURRENTLY SUPPOR-
TED)

Description
If the sources contained in this package need to be patched, a patch file can be included in the package and declared
with a patch tag. The specifics of this patch file have not yet been determined and this tag is not yet supported by
ReST.

Parents
The following elements are valid parents of patch: header.

Children
The following elements are children of patch: No Children.

Draft Draft

50

Name
pre -- A set of predefined options and substitutions.

Description
The pre set gives developers a way to pre-define certain options and substitution cases for common installations.
For example, if certain options are suggested when installing on x86 Linux, a pre set may be defined for x86 Linux
installations. See predefs for a usage example.

Attributes

• name (required) - The name of this pre-defined set.

• description (optional) - A description of when this set is appropriate.

• id (optional) - A unique identifier for this set, used in package dependencies

Parents
The following elements are valid parents of pre: predefs.

Children
The following elements are children of pre: def.

Draft Draft

51

Name
predefs -- Provide groups of pre-defined command options and configuration substitutions.

Description
When the developer wishes to pre-define certain options and configuration substitutions to help users by simplifying
package configuration, the predefs group is used. These sets allow the user to suggest certain options and substi-
tutions for common installation cases. For example, the developer may define pre-defined sets for x86 Linux and
Solaris.

Parents
The following elements are valid parents of predefs: header.

Children
The following elements are children of predefs: pre.

Example

Example 15. Predef and Def Example

Example still to be written.

Draft Draft

52

Name
preparation -- The 1st of the 5 steps to installing a package.

Description
This is the 1st of the 5 steps to installing a package, occuring before configuration. Commands that relate to compil-
ing the contained software should be done in this step.

Parents
The following elements are valid parents of preparation: package.

Children
The following elements are children of preparation: command.

Draft Draft

53

Name
sub -- Defines a substitution that will be made in a configuration file.

Description
This element maps a substitution in a configuration file. This substitution is only relevant to the file defined by the
parent configfile tag.

Attributes

• name (required) - The token that will be substituted in the file. This token should not contain any spaces or spe-
cial characters.

• description (recommended) - A description of what this particular substitution does in the configuration file.

• format (optional) - This parameter is used to validate that the input is of the proper form. This is not currently
supported by ReST.

• default (required) - The default value is this substitution is not customized.

• type (required) - What type of substitution is this? Valid types are string (one line of text), option (chosen from a
list), text (multiple lines of text), boolean (true/false).

• truevalue (required if type=boolean) - The value to subsitute if type is boolean and true is selected. This can con-
tain an empty string.

• falsevalue (required if type=boolean) - The value to subsitute if type is boolean and false is selected. This can
contain an empty string.

• choices (required if type=choice) - A comma separated list of possbile choices for this substitution.

• customChoice (optional) - If the type is choice and this attribute is set to true then the user may choose from the
list of options or give their own value for this substitution. If this attribute is false or not declared, the user is re-
stricted to the given choices.

Parents
The following elements are valid parents of sub: configfile.

Children
The following elements are children of sub: No Children.

Example
See configfile for an example of how to use this tag.

Draft Draft

54

Name
title -- The title the will appear in the ReST applications for this package.

Description
The title the will appear in the ReST applications for this package. If the title is longer than 32 characters long
(including spaces), an additional short title should be provided.

Atrributes

• role (optional) - If this is some special title, like a short title, what role does it serve? By default the ReST applic-
ations only support role short, but other roles may be added.

Parents
The following elements are valid parents of title: header.

Children
The following elements are children of title: No Children.

Draft Draft

55

Name
uninstallation -- An option additional step to define how to uninstall a package.

Description
This is the an optional step the defines how to uninstall a package. Commands that relate to deleting the contained
software should be done in this step.

Parents
The following elements are valid parents of uninstallation: package.

Children
The following elements are children of uninstallation: command.

Draft Draft

56

Name
uri -- A standard URI that may be used to provide more information about a package or package author.

Description
A standard URI that may be used to provide more information about a package or package author. This may include
a mailto URI.

Parents
The following elements are valid parents of uri: header, packager.

Children
The following elements are children of uri: No Children.

Draft Draft

57

Name
version -- Give the version of packaged software.

Description
The version of the software included in this package. This should be the software version and not a version for the
ReST package itself. The optional version attribute of package should be used instead to give a version of the ReST
package, if desired.

Parents
The following elements are valid parents of version: header.

Children
The following elements are children of version: No Children.

Draft Draft

58

Complete Package XML

Draft Draft

59

Name
Complete Package XML Example -- Show the complete XML of a package.

Complete Package XML

Example 16. Example Package XML

<?xml version="1.0" encoding="UTF-8"?>
<package xmlns="http://icl.cs.utk.edu/ReST/Package/1.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://icl.cs.utk.edu/ReST/Package/1.0

http://icl.cs.utk.edu/rest/restpackage-1_0.xsd">

<!-- Basic information about the software package -->
<header>
<title>NetSolve Installer</title>
<base>NetSolve</base>
<version>2.0</version>
<description>NetSolve is a grid middleware package</description>
<uri>http://icl.cs.utk.edu/netsolve/</uri>

<!-- Basic information about the packager -->
<packager>

<name>Jeff M. Larkin</name>
<uri>mailto:larkin@cs.utk.edu</uri>

</packager>

<actions>
<action name="Start Server" tooltip="Start a NetSolve server.">
<command value="/bin/bash ./start_server.sh" statusmsg="Starting Server"

errormsg="Failed to start server."/>
</action>
<action name="Kill Server" tooltip="Kill a NetSolve server.">
<command value="/bin/bash ./kill_server.sh" statusmsg="Killing Server"

errormsg="Failed to kill server."/>
</action>
<action name="Restart Server" tooltip="Restart a NetSolve server.">
<command value="/bin/bash ./kill_server.sh" statusmsg="Killing Server"

errormsg="Failed to kill server."/>
<command value="/bin/bash ./start_server.sh" statusmsg="Starting Server"

errormsg="Failed to start server."/>
</action>
<action name="Start Agent" tooltip="Start a NetSolve Agent.">
<command value="/bin/bash ./start_agent.sh" statusmsg="Starting Agent"

errormsg="Failed to start Agent"/>
</action>
<action name="Kill Agent" tooltip="Kill a NetSolve Agent.">
<command value="/bin/bash ./kill_agent.sh" statusmsg="Killing Agent"

errormsg="Failed to kill Agent"/>
</action>
<action name="Restart Agent" tooltip="Restart a NetSolve Agent.">
<command value="/bin/bash ./kill_agent.sh" statusmsg="Killing Agent"

errormsg="Failed to kill Agent"/>
<command value="/bin/bash ./start_agent.sh" statusmsg="Starting Agent"

errormsg="Failed to start Agent"/>
</action>

</actions>

<configfile packagefile="server_config"
remotefile="NetSolve-2.0/server_config"
description="NetSolve Server Configuration File">

<sub name="nproc" description="Number of processors"
default="2" type="string"/>

<sub name="agent" description="The NetSolve Agent hostname"
default="netsolve.cs.utk.edu" type="string"/>

<sub name="scratch" description="Scratch Directory"
default="/tmp/" type="string"/>

<sub name="mpihosts" description="Number of MPI Hosts"
default="4" type="string"/>

Draft Draft

60

<sub name="workloadmax" description="Maximum allowable workload"
default="-1" type="string"/>

<sub name="testing" description="Testing PDF"
truevalue="" falsevalue="#" type="boolean" default="true"/>

<sub name="qsort" description="QuickSort PDF"
truevalue="" falsevalue="#" type="boolean" default="true"/>

<sub name="area" description="Area PDF"
truevalue="" falsevalue="#" type="boolean" default="true"/>

<sub name="mandelbrot" description="Mandelbrot PDF"
truevalue="" falsevalue="#" type="boolean" default="true"/>

<sub name="blas_subset" description="BLAS Subset PDF"
truevalue="" falsevalue="#" type="boolean" default="true"/>

<sub name="lapack_subset" description="LAPACK Subset PDF"
truevalue="" falsevalue="#" type="boolean" default="true"/>

<sub name="lapack" description="LAPACK PDF"
truevalue="" falsevalue="#" type="boolean" default="false"/>

<sub name="lapack_extended" description="LAPACK Extended Drivers PDF"
truevalue="" falsevalue="#" type="boolean" default="false"/>

<sub name="scalapack" description="SCALAPACK PDF"
truevalue="" falsevalue="#" type="boolean" default="false"/>

<sub name="sparse_iterative_solve" description="Sparse Iterative Solvers PDF"
truevalue="" falsevalue="#" type="boolean" default="false"/>

<sub name="sparse_direct_solve" description="Sparse Direct Solvers PDF"
truevalue="" falsevalue="#" type="boolean" default="false"/>

<sub name="arpack" description="ARPACK PDF"
truevalue="" falsevalue="#" type="boolean" default="false"/>

<sub name="testingglobus" description="Globus Testing PDF"
truevalue="" falsevalue="#" type="boolean" default="false"/>

<sub name="restrictions" description="Maximum allowable workload"
default="" type="text">* 10</sub>

</configfile>
<configfile packagefile="MPImachines"

remotefile="NetSolve-2.0/MPImachines"
description="NetSolve MPI Hosts File">

<sub name="hosts" description="List of MPI Hosts" type="text" default="">
enterprise
enterprise
enterprise
enterprise

</sub>
</configfile>
<configfile packagefile="netsolve.env"

remotefile="netsolve.env"
description="NetSolve Environment Variables">

<sub name="agent" description="NetSolve Agent"
default="netsolve.cs.utk.edu" type="string"/>

</configfile>
<!-- Package source(s). We can do both remote and local files -->
<packagesrc>NetSolve-2.0.tgz</packagesrc>
<packagesrc>config.guess</packagesrc>
<packagesrc>start_server.sh</packagesrc>
<packagesrc>start_agent.sh</packagesrc>
<packagesrc>kill_agent.sh</packagesrc>
<packagesrc>kill_server.sh</packagesrc>

<installerattributes>
<backgroundimage>http://www.cs.utk.edu/~meek/icl/GSAP/netsolve_bg.png</backgroundimage>
<icon>http://icl.cs.utk.edu/favicon.ico</icon>

</installerattributes>
</header>

<!-- Things to do before anything else -->
<preparation>
<command value="gunzip -f NetSolve-2.0.tgz" grouped="true"/>
<command value="tar -xf NetSolve-2.0.tar" grouped="true"/>
<command value="cd NetSolve-2.0/" grouped="false"/>

</preparation>

<!-- Configuration of the package before compilation -->
<configuration>
<!-- This is the configure line -->
<command value="./configure" grouped="true">

<!-- One of the possible configure options -->
<option name="lapack" type="text" default="/usr/local/lib/libpack.a"

truevalue="--with-lapack="/>
<option name="blas" type="text" default="/usr/local/lib/libblas.a"

truevalue="--with-blaslib="/>
<option name="petsc" type="text" default=""

truevalue="--with-petsc="/>
<option name="petsclibdir" type="text" default=""

Draft Complete Package XML Example Draft

61

truevalue="--with-petsclibdir="/>
<option name="aztec" type="text" default=""

truevalue="--with-aztec="/>
<option name="azteclib" type="text" default=""

truevalue="--with-azteclib="/>
<option name="superlu" type="text" default=""

truevalue="--with-superlu="/>
<option name="superlulib" type="text" default=""

truevalue="--with-superlulib="/>
<option name="ma28" type="boolean" default="false"

truevalue="--with-ma28"/>
<option name="itpack" type="boolean" default="false"

truevalue="--with-itpack"/>
<option name="arpacklib" type="text" default=""

truevalue="--with-arpacklib="/>
<option name="mpi" type="text" default=""

truevalue="--with-mpi=" falsevalue="--without-mpi"/>
<option name="scalapack" type="text" default=""

truevalue="--with-scalapacklib="/>
<option name="blacslib" type="text" default=""

truevalue="--with-blacslib="/>
<option name="mldk" type="text" default=""

truevalue="--with-mldk="/>
<option name="rpclib" type="text" default=""

truevalue="--with-rpclib="/>
<option name="rpcinc" type="text" default=""

truevalue="--with-rpcinc="/>
<option name="octave-include" type="text" default=""

truevalue="--with-octave-include="/>
<option name="gpg" type="text" default="/usr/bin/gpg"

truevalue="--with-gpg=" falsevalue="--without-gpg"/>
<option name="buildgpg" type="text" default=""

truevalue="--with-buildgpg="/>
<option name="nws" type="text" default=""

truevalue="--with-nws="/>
<option name="ibp" type="text" default=""

truevalue="--with-ibp="/>
<option name="kerberos" type="text" default=""

truevalue="--with-kerberos"/>
<option name="proxy" type="choice" choices="nestolve,globus" default=""

truevalue="--with-proxy "/>
<option name="ouputlevel" type="choice" choices="debug,view,none" default="none"

truevalue="--with-outputlevel "/>
<option name="infoserver" type="text" default=""

truevalue="--enable-infoserver"/>
</command>

</configuration>

<!-- Source Compilation -->
<compilation>
<command value="make" grouped="true">

<option type="boolean" truevalue="standard" name="Standard" enabled="true"/>
<option type="boolean" truevalue="all" name="All"/>
<option type="boolean" truevalue="server" name="Server"/>
<option type="boolean" truevalue="agent" name="Agent"/>
<option type="boolean" truevalue="C" name="C"/>
<option type="boolean" truevalue="Fortran" name="Fortran"/>
<option type="boolean" truevalue="matlab" name="Matlab"/>
<option type="boolean" truevalue="octave" name="Octave"/>
<option type="boolean" truevalue="mathematica" name="Mathematica"/>
<option type="boolean" truevalue="gridrpc" name="GridRPC"/>
<option type="boolean" truevalue="pdfgui" name="PDF Gui"/>
<option type="boolean" truevalue="tools" name="Tools"/>
<option type="boolean" truevalue="wrappers" name="Wrappers"/>
<option type="boolean" truevalue="tester" name="Tester"/>
<option type="boolean" truevalue="regress" name="Regression Test Suite"/>
<option type="boolean" truevalue="clean" name="Clean"/>
<option type="boolean" truevalue="configclean" name="Configclean"/>
<option type="boolean" truevalue="CLEAN" name="Clean every architecture"/>

</command>
</compilation>

<!-- Package Installation -->
<installation>
<!--<command value="make install"/>-->

</installation>

<!-- Clean-up what is no longer needed -->
<completion>
<command value="cd ../"/>

Draft Complete Package XML Example Draft

62

<command value="rm -rf NetSolve-2.0.tar" grouped="true"/>
<command value="rm -rf NetSolve-2.0.tgz" grouped="true"/>

</completion>

</package>

Draft Complete Package XML Example Draft

63

