ReST Packager's Guide

An introduction to creating ReST packages.

Eric T Meek, Innovative Computing Laboratory, UT <neek@s. ut k. edu>
Jeff M Larkin, Innovative Computing Laboratory, UT <l ar ki n@s. ut k. edu>



Draft Draft

ReST Packager's Guide: An introduction to creating ReST pack-

ages.
by Eric T Meek and Jeff M Larkin

Abstract

The most important aspect of creating any software package is distributing it in an uncomplicated and unified man-
ner. However, creating robust software packages which are uncomplicated requires much planning. Using the ReST
Packager, however, lessens the burden of pre-planning by providing a step-by-step wizard breaking down package
creation into manageable sections. Each section has extensive documentation regarding the purpose of each feature
and has color coded fields which show which are required and which are optional. Each feature has helpful tooltips
providing a quick reminder of how to useit. It should be noted not all features available in the Packager are imple-
mented in the Installer. However, filling out each feature available in the packager ensures completeness and com-
patibility with future versions of ReST. Essentially, the ReST Packager serves as a guide through the difficult pro-
cess of creating robust ReST packages. This, in-turn, guides users though installing the software just packaged in a
unified manner both in remote heterogeneous and future supported installation environments.




Draft Draft




Draft

Draft

Table of Contents

1. REST PaCKAgE BASICS .....uuiiiiiiiieeiii ettt ettt e ettt e e et eaaas 1
ThE PaCKagE SIIUCKUIE ... ettt e ettt e et e e et e e e e e e eraa s 1
[ =0 0T oo PPN 1

A I 0 T= T = o o = 1N 2
The Package HEaEr ..........iiii i e e e e e e e e e aaaees 2
100011 To 8= 1 Lo 0 1 =1 = 4
THhE PaCKBgE FIIES ... et 7
The Package COMMEANGS ......c.uuuiiiii ettt ettt ettt e e et e e et eeeraa s 7
Creating the COMIMANGS ........iiie e e e et e et e e et e e e e eannas 8

I LST TR = o1 P 9
Package COmMMANGS ......c.uiiiii it e e e e e e e e e e e e et e e et e e e e eeanaas 9
(@0 4140 a0 I o)1 o] 1S 10
o0 1 12

3. Creating and using the Package flle ... 14

R @e o 11 = o] PP 15

I, Package XIMIL EIEMENES ....cuuiiiiii i e e e e e e e et e e e e e e e eaneees 16
= Yo S o o PP 17
= o B o] o = PP 18
DACKGI OUNACOI OF ..o et e e 19
DACKGI OUNAI IMBGE ...t ettt e e et e e e et e eees 20
= LY T UPTRPPTRN 21
(oF aT=T ot 11U [ 14 ¥ | o I PPN 22
(oo .12 o o PP 23
(o3 3110 I= LA 1 ] o 25
[oF o] 101 =1 01 10 o IO PPTPPP 26
CONT I F T | B e et 27
(oXo] o) B o 18 [ = U A o ] o PP 29
0 1= R PO s et OO 30
(o 11 o2 I o ] 1 o S 31
g o oY =T - LA T o 11 | = = 32
L= = T 1= PP 33
1o o ] o PPN 35
0 1 o T T UPTRPPTRN 36
0 1 o 18 | PP UPTRPPTRN 37
=Y A Y = L o T o TP 38
I NSt Al | @rat tri DUL ES .o et eeaaa e e 39
T o = 1= PP 40
I o =T 1Y =1 | T UPTPPTR 41
MONI T OF AL T F T DUL B Lot e e e e e e ean e 42
(1= 101 =T PRSPPI 43
(o 01 10 Yo 44
= T = Vo = PP 46
[OF= Yo ¢ To =T | ST PTTTUPPPTPRUPPIN 47
[F=Tod 1¢= T 1= ST UP PP TPPPPPTTRUPPIN 48
=T = T 1= o PRSPPI 49
1= L o o N 50
] = PP PRPRPPRPR 51
=T 0 1= PR 52
[T =T o TV =1 A o o [PPSO 53
£ 0o R 54
L = PP 55
UNENST AL T AT T ON e ettt e e e e e 56
U PTPN 57




Draft ReST Packager's Guide Draft

A =T =T 01 o PSP 58
[1. COMPIELE PaCKAgE XML . .eenieiiie et e e e e e e e e e e e e e e e et e e et e e eanaeeaes 59
Complete Package XML EXAMPIE ........iiiiii e 60




Draft

Draft

List of Figures

O (= =] o 1= = PP 2
2.2. SeElect ConfigUIratioN FIlES ......iie e e e e e e e e e e e e e aaaees 4
2.3. Configuring SUDSLITULIONS .......cevuieeeit et e et e e e e e aaa s 5
2.4, Configuring SUBSLITULIONS .......ceuuieieitie ettt ettt e et et e e e naa s 6
A N o [ To 1= SRR PPN 7
2.6. COMMANG SECLIONS .....eeeetie ettt ettt ettt e et e et r e et e e et e e e e et e e e e nna s 8
2.7. A Package COMMBING ......cveiiiiiieeii e e e e e e e e e e e e et e e e e et e e et s e e e e e aa e e et s e et e eean e aanneaeennaes 9
2.8. A Package Command OPtioN ..........iiiiiieiiiieis e e e e e e e e e e e e 10
2.9. The ACtON SEIUP PaNEl ... ettt e et e eaaas 12
2.10. The Action Command Option SEtUP Panel .............iiiiiiiiiiiiii e 12

Vi



Draft

Draft

List of Examples

P B = Ta o == g RSN o1 = o o S 6
N I 1= G TR (= P 9
2.3. Command OPLION XIML ...oouuiiiiii ettt ettt eaaas 11
2.4, Package ACHIONS XIML ..ottt ettt et e e e eaaas 13
3.1. RunNNing the REST PaCKager. .......c.uiiiiiiiiii e e e 14
3.2. INSAIING APACKAGE ....vvnciiii e e 14
AR 2w L0 I 2] o] 1= 17
8. ACHONS EXAMPIE ..ot 18
9. CoMMAN EXBMPIE ...ttt ettt e eaaas 24
10. Configfile XML EXBMPIE . .ooieiiiii et et e et e e et e e eebe e e e 27
11. Sample Configuration File SHUD ... e 27
12. Package Header EXAMPIE ......oouiiiii e e e e e e e e e e e e e e ees 33
T I o= 0 = 0] P 40
14, LiCeNSBUN EXBMPIE ..uuiei et e e e e e e e e a e 41
15. Predef and Def EXAMPIE ... oot e 52
16. EXaMPIE PaCKBOE XML ...ttt ettt ettt e et e e et et eeeaba e eee 60

Vii



Draft Draft

Chapter 1. ReST Package Basics

Although used primarily by the ReST Installer, ReST packages are the means by which the ReST Application Suite
is customized for individual pieces of software. The ReST package contains the software and metadata needed by
the Installer to install software on remote machines. The package metadata is used by the Installer and Explorer to
maintain the state of installed software and in future versions of ReST it will contain information needed to custom-
ize the Monitor to work with the installed packages. In order to produce a well-written package it is important to un-
derstand what is contained in the package and what conventions are expected by the ReST Suite.

The Package Structure

A ReST package is essentially a ZIP/JAR file containing two special files, a package XML file and a checksum file.
The package XML file, name package.xml inside the package, contains both basic metadata about the package and
instructions on how to install the package from source or pre-compiled binaries. The checksum file, at this time must
be created by the ReSTPackager program contains checksums of each file within the package and is must pass be-
fore the Installer will run the package. Details about the package sources are not necessary, since they could be any
file that is pertinent to the software being installed. Details about writing the package XML, including documenta
tion of each XML tag, and creating the package file appear later in this document.

It is possible to extract the package.xml file from the package using the jar utility supplied with the Sun JDK. The
simplest means of extracting the package.xml is with the command jar -xvf <package name> package.xml. If you
would like to extract the remainder of the contents, simply leave the package.xml off the end of the command. For
more information see the Package Makers guide in the ReST online documentation section.

Planning

The planning step is the most important part in successfully creating a working package. Before writing the XML
create a step-by-step list of how the software is installed. If possible, walk through the installation in a clean /
bin/bash environment, since this will more realistically reflect the environment in which ReST will install the soft-
ware. Once this list has been written, place a mark next to each command that would not need to be run on every
machine in an homogeneous environment with a shared filesystem. Now note command options that should be
offered for each command, for example ./configure --with-foo. Try installing the software by walking through this
list one command at atime; if it works without problem then fewer problems are likely to occur when the package is
written.




Draft Draft

Chapter 2. The Packager GUI
The Package Header

Upon opening the ReST packager, you will notice severa distinct elements of the layout. First, the packager is built
on the same framework (ReST Wizard Framework) as the ReST Installer. Using the same framework allows the
packager to become familiar with the Wizard Framework as well as providing a simple means of walking packagers
through the complex process of creating a ReST Package. Each major section in package creation is located on an
distinct panel listed on the left side of the packager. The panel that is currently selected has an arrow on the left side
(left callout in Figure 2.1). Separating the sections into distinct panels allows packagers to better focus on each indi-
vidual section and have a firm roadmap for package creation. Each element has an associated tooltip which de-
scribes the purpose of the entry. After the packager is open, it is possible to open both ReST Packages (.rsp) and
ReST Package XML (.xml). It is important to make sure that the all of the included files listed in the package files
are accessible to the packager.

Figure 2.1. Create Header




Draft The Packager GUI Draft

- Jtie =53

Fie Optiors Help

w Creste Header Title: Create Header
Sel=ct Config Fies Populata &l ihe necessary information for your ReST package
Sebup Carfig Fikes = Bk Header Sethings |
Select Packags Files Titke: | Packags Tile

Setugl=| Basic Header Settings |

el Title: | Package Title
Shart Tikle: | Title
ger: h'li_:-l I_III T
m Create Header URL: medDeciample.com
Select Config Files 0N This is the description for the package and is diplayed in the package i

Setup Config Files rfo parel, Part of & is displayed under the package tle,
Select Package Files
Setup Commands
2etup Actions

 Displaved as the “ReadMe” in the installer. 1F this is Filed in and the In
fia LRI is akso filled in, this test will be displayed.

Irifia ILIRLL:

Licaree:  Thig loense baxk has the same priorty over the license URT just as Info
URT, If th= Force User ba Accent Fhe Licsrss ootion & selected, the u
sar ks not allowed o proceed past the license without agresing to the i

CENSE,
Liceris= LAL:
[ Force user to accepk the icense
+ Adwanced Header Settings

1]

The common elements in all panels of the packager (cutout in regular size with the packager window in the back-
ground). Y ellow dia ogs denotes required entry and left panel list shows location and todo list of package creation.

There are several important tags in the above example. Theti t | esets the package title that will appear in the In-
staller. If thetitle is longer than 25 characters, a second, shorter title may be set with the r ol eattribute set to short.
If no short title is provided and the title is longer than 25 characters, then in space-constrained parts of the applica
tion the long title will be truncated at 25 characters. The baseelement gives away of grouping packages that should
beinstalled in a similar area. For example, packages for the LAPACK and BLAS libraries have been written with a
base of libso that they, and other libraries, will be easy to find and use. The baseshould always be set to a value
that will be valid for the filesystem on all target machines.

The contents of the ver si ontag should be the version on the software in the package and not the version of the
package itself. The version of the package can be given as an attribute of the packageroot element if desired. Ad-
ditional tags exist for the package header, including options for editing configuration files, added files to the pack-
age, and defining actions that can be performed once the package has been installed. All of these tags are defined
with examples in a reference sectionat the end of this document.




Draft The Packager GUI Draft

Configuration Files

Many software packages have configuration files that must be edited before the software can be used. To the de-
veloper of a software package writing the configuration files may be trivia, but thisis often not the case for the end
user. For this reason, the ReST Installer may be used to edit configuration files for the software package. The pack-
age must include a stub configuration file with a series of tokens to substitute. Each token appears with a % charac-
ter on either side of the token, such as %token%. With a stub file created the packager must define the substitutions
for thisfilein the Packager.

The configuration files are a special category of package files as stated above. The configuration (config) file tokens
are substituted during transfer after all the package files are transferred and the preparation commands are com-
pleted. To add a config file to the package, browse to the files containing the tokens or type in the location and
choose import. As the files are imported, they are scanned for any tokens contained and the number of tokensis dis-
played in the tokens column. Double clicking on arow or right clicking on it and selecting view will display the file
in the viewer. If a config file needs deletion, right click on the file and select remove. The complete file path can be
viewed as atooltip by hovering the mouse cursor over the row as seen in Figure 2.2.

Figure 2.2. Select Configuration Files

e RS

Fie Optiors Help

Creste Hesder Title: Select ﬂﬂl‘lﬂg Files
= Select Config Fies Selec] filks needing cuslomizalion Tor each logicsl groug
Setup Carfig Fikes Salact File
Select Package Files -
Setup Commands [ B ]I- import ]
Setup Actions
Local Path Package File Rermate Fik # of Tokens Crascription
—k_] I |
| L e e dPe i i I e |
Select File
| Browse ” Irnpork |
Local Path Package File Remote File # af Tokens Descripkion

e | |

|jar:FiIe:,I'C:,l'Du:un:uments%EIIIanu:I"foEIIISettings,l'meeHe:-:ample.rsp!,l'n:n:unFig |

Yeboolean%s %string%e “echoice%s
“obext%s

Selecting configuration filesis easily done using the packager.

Once dl the config files have been imported into the Packager the Setup Config Files panel display's the config files
tokens needing to be setup. The confi gf i | etag has three attributes: packagefile (the location of the stub file in

4



Draft The Packager GUI Draft

the package), remotefile (where the resulting configuration file should be placed on the remote machine), and de-
scription (a simple description for the user). Additional information about the conf i gf i | eand subtags, including
additional attributes to each, can be found in the reference section at the end of this document. Figure 2.3 shows the
"config" config files with four tokens titled "boolean", "string”, "choice" and "text". When the Setup Config Files
panel initially loads, each config file is listed with a collapsable section containing the tokens. The first config file
initially is expanded as show for the "config" configuration file in Figure 2.3. Each token also has a collapsable sec-
tion under it, as show in Figure 2.4, with the various types of substitutions that can performed. It isimportant to note
the names of the tokens are very important because they are what is displayed to the user when prompting for input.

Figure 2.3. Configuring Substitutions

i BEC

Fie Optiors Help

Craska Hesder TiﬂE: SEtI.Ip cn“ﬁg F“E‘g

Select Config Files oty The uzer conmiguradle substiulions (Mousedaer rames Tor descriglions)
= Setup Config Files = config

Select Package Files = boalean

Satup Cammands Description: | Boolean

Se=tup Actions Twma boolaan

Default: | this is a boolean
True Yalue: | mys
Ealen Malisn: | fales
= config |

= bonolean
Description: | Baalean

T¥PE!  boolean
Default: | this is a boolean
True YWalue: | kue
False Value: | false
+| skring
+ choice

+| bexk l]

Setting-up the configuration files substitutions

Once dl the configuration files have been entered the Setup Config Files panel displays all the configuration
(config) files with an associated listing of all the config files tokens. Each config file token also has a collapsable
section alowing for selecting the type of substitution and setting up the token. Every token requires several common
inputs, Type, Description and Default. The substitution type determines what the installer displays for input.
Boolean displays a checkbox with the associated token name. String displays a single line text input box. Choice
displays a drop-down box, similar to the box for Type, that can be made editable by the packager by selecting the
appropriate checkbox. The choice values are input in a comma delimited list and may contain spaces. The final sub-
gtitution type is text. The text area alows for substitutions to be made containing special characters such as tabs and
newlines. Aswith all components, any field with ayellow background signifies required field for the specific substi-
tution type.




Draft The Packager GUI Draft

Figure 2.4. Configuring Substitutions

EEI config E

Fi
“! = boolean
Description: | Boolean
- T¥PE! | hoolean D I
Default:
True Yalue:
False Yalue:
[=I skring
Description: | Skring
Default: | this is & string
= choice
Cesoipbion: | Chaica
Typa: aption E
Default: | this is an option
= ot ]
Descripbion: | Taxt
Type: bk l.-.

(7] T hack | [t |

Types of configuration files substitutions

In the previous two figures (2.4 and 2.5) only four substitutions are made ReST, however, will handle as many sub-
stitutions as are needed. Each of the four substations represents a type of substitution supported by ReST
st ri ng(no more than one line of text), t ext (multiple lines of text), choi ce(a defined set of choices, much like
available for command options) and boolean (a checkbox defining if a predefined substitution should take place).
Each substitution type is useful for different types of substitutions. For example, boolean substitutions are useful
when a single line needs to be commented or uncommented. This could be done by the following example

Example 2.1. Boolean Substation

#Uncoment the next line to enable 3D npode %Enabl e 3D
Mode%enabl e- opengl

The token is "Enable 3D Mode" and the most useful substitution type would be boolean. With the boolean type se-
lected, two new fields are displayed, true value and false value. The user is displayed a checkbox when setting up
the config file. If Default is set to "true" then the default substitution made is with the true value, otherwise, the false
value is used for the substitution. So, if the true value is set to "" and the false value is "#", the user can change the




Draft The Packager GUI Draft

value easily in afamiliar way but clicking on a check box followed by "Enable 3D Mode".
The boolean substitution has the most complex substitution usage available in ReST. The other substitutions have
less options available and are therefore less complex in their usage. The types of substitutions that are not boolean

all have a default value. If no user customized value is provided then the default it substituted when the substitution
takes place for al types except boolean.

The Package Files

Figure 2.5. Adding Files

e RS

Fie Optiors Help

Creste Hesder Title: Select Paﬁkage Files
Select Config Files Select non-conlig fles necessary instalslion only transfesred 1o flemaster
Setup Carfig Fikes Salact File

m Select Package Files
Setup Commands
Setup Actions

[ Browse ][ Iripwart ]

Lacal Path Package Path Filker Moxde
}ar:fle:.l'cghl:n:-:!.lms... installar.png
I
Select File
| Browse ” Import |
Local Path Package Path Filker Maode

jar:file:}CefDacume. .. [installer.prg | | |
“N

|jar:FiIe:,I'C:,l'Du:u:uments".-i:-EDand°fn2IIISettings,l'meek,l'e:-:ample.rsp!,l'installer.png |

B | Back || mest |

Adding files to the package

Adding files to the packages is very similar to adding config files except all the filesin a directory can be added by
selecting the containing dir. Package files are transferred before any of the package commands are executed. All of
the package files are placed in the directory that package working directory. This provides the packager a common
experience when creating packages and working with the package files.

The Package Commands




Draft The Packager GUI Draft

Figure 2.6. Command Sections

T Title -3
Fie Cpliors Hep
Creste Header Title: Setup Commands
Select Canfig Fies Cresbe commands (nun in displayed order) ussd for packege instalation (Mouseowar rame. .
Setup Canfig Files = Prepearation with 1 commends [#]
Select Package Fies " =]
w Setup Commands = Corfiguration with 1 commands (s
Satup Actions & pwad {0 options) I
= Compilstion with | cammands [+
& padd (0 0pkicns) (-]
=l Preparation with 1 commands I=
prd (1 options) | [+][-] D
|= Configurakion with 1 cornmands H
pind (0 options) HE &
|=| Corpilation with 1 commands a
pvd (0 opkions) (4[]
|=) Installakion with 1 cormmands
pvd (0 opkions) (4[]
|= Corpletion with 1 commands
piwd (0 opkions) (=[]
|=) Uninstallation with 1 commands
pwwd (0 opkions) (=[] E_]
— 1 T

The six command sections

Commands in the package are broken into six steps, which smply provide alogical grouping of the commands that
are run. The six steps as seen in Figure 2.6, in order, are Preparation, Configuration, Compilation, Installation,
Completion, and Uninstallation, with the last grouping actually optional. Commands that need to be run first, before
anything else can happen, such as extracting archives or creating directories should be placed in the preparation step.
Package sources will be sent to the remote machine and package directories will be created prior to this step. Any-
thing pertaining to configuring the software, such as running a configure script should be placed in the configura-
tion step. Configuration files included in the package will be sent to the remote machine between these first two
steps. Commands related to compiling and installing the package should be placed in the next two steps respect-
ively. During the completion step the packager should clean up the build area however possible, such as deleting un-
needed sources that remain. Lastly, if a packager would like to provide a means for automatically uninstalling their
software, commands pertaining to this should be placed in the uninstallation step. Each step is essentially equal, but
provides a logical way of organizing the package. Packagers are encouraged to group their commands using these
logical step. Every step except the uninstallation step must be in the package XML, but may be empty if not needed.

Creating the commands

The sections below will provide an overview of how to write a package XML file. For more detailed information
about the XML tags, including advanced attributes, please see the reference section at the end of this document.

8



Draft The Packager GUI Draft

The 6 Steps

As explained earlier, all commands for installing and uninstalling a package are organized into six logical steps:
preparati on, confi gurati on, conpi l ati on, installation, conpl eti on, and
uni nst al | ati on. Theuni nst al | at i onstep is optional, but recommended. These steps are essentially equal,
except that configuration files are sent to the remote machine between the preparati onand
confi gurati onsteps. It is highly recommended that packagers take advantage of the six steps for logically
grouping the package commands. Future version of the the ReST suite may contain optimizations or changes in the
handling of these steps and forward compatibility is best ensured by using these steps. Below is an example of the
six steps appearing in the package xml as seen in Figure 2.6.

Example 2.2. The 6 Steps

<preparati on> <command val ue="tar -xf
exanpl e. tar"> <conmand val ue="cd exanpl e/ ">
</ preparati on> <confi gurati on> <comrand
val ue="./configure --prefix=$PWD">
</ confi gurati on> <conpi | ati on> <comrand
val ue="nmeke al |l "> </conpil ati on>
<instal |l ati on> <conmand val ue="nmake install">
</installation> <conpl eti on> <conmand
val ue="neke cl ean"> <comand val ue="cd ..; /bin/rm-f
exanpl e. tar"> </conpl eti on> <uni nstal | ati on>
<command val ue="cd exanpl e"> <conmand val ue="nake
uni nstal | "> <command val ue="cd ..; /bin/rm-rf
exanpl e/ "> </uninstal |l ati on>

Package Commands

Package commands makeup the heart of rest packages. Commands are run in the bash shell and as seen in Figure 2.7
have several attributes. The most important attribute is the command value. The command value is that actual com-
mand that will be executed. Options for the command may be included in the command value but are better left asa
command option included with the command. The description is the next most important value showing up as a
tooltip when the Installer user modifies the command. It allows the packager to provide further information to the
user as to the purpose of the command and what the user might decide to do with the command. The Command ID
will be automatically generated by the packager, but should be customized for better interoperability with the In-
staller scripting mechanism and upcoming features of the ReST Tool Suite. The error message is displayed to the
user associated with the machine the command failure occurred. The status message is displayed on the machine the
command is running.

Figure2.7. A Package Command




Draft The Packager GUI Draft

x
Creste Header Title: SE'II.]: Commands
Select Config Fies Creste comrands (run in dzplaysd order) usad for packeage instalstion (Mouseover name.
Setup Carfig Fikes I= Preparation with 1 cammends B
Select Package Files = pwd {1 options) E0 W
= Setup Commands Command Yake: | pd
S=tup Actions Command 1Dt | commands?

Error Message: | pwd Failed
Status Message:  Exeouting ped
De=cripion:

] rouped command

—
Preparation with 1 commands =]
= pwd {1 options) (HEL
Carmmand Yalug: | pwd -
Cormmand ID: | command3? -E
Error Message: | pwd Failed -
Skatus Message:! | Executing pwd
Description: :
[ ] Grouped command —
a8 [osoyhest |

A package command

Command Options

Some commands may need to be configured by the user before they are run on the remote machine. For that reason
the ReST XML alows commandtags to contain opt i ontags. The opt i ontags define command-line arguments
for a given command and can be configured by end users. A good example of a command that will likely contain
optionsisthe. / conf i gur escript, which isincluded in many source distributions. It is common for this command
to have many different command line options for properly configuring the build process. Below is an example of the
./ conf i gur ecommand with options.

Figure 2.8. A Package Command Option

10



Draft

The Packager GUI

Draft

Fie Cptiors Hep
Creste Header Title: Setup Commands
Select Canfig Fies Creabe commands (nun in displayed order) usad for package instalstion (WMouseover name. .
Satup Curf'ig Fil=z = Preparstian with 1 cammands |:1-. L
Select Package Fies = pid {1 aptions) EE |
= Setup Commands Command Yake: | pd :
Setup Actions Command 10t coemenand37?
Error Message: | pwd Failed
Status Message: | Exeputing pued
Desscription;
[=] Cptions
=) optionO (+1[-] = :‘jd ,
Opkion Mame: | gption |
Option ID: | gptiono | B
TYPE! | chring D —
Default: 1
True Yalue:
[ ] Enable command by default 5
* —
Descripkion: I

]

The package command option configuration GUI

Example 2.3. Command Option XML

<conmand val ue="./configure" grouped="true">

<option name="foo" type="text"
defaul t="/usr/local /l1b/libfoo.a"

trueval ue="--wth-1ibfoo="/> <option nane="bar"
type="bool ean" defaul t="fal se" trueval ue="--wth-Iibbar"
fal seval ue="--wi thout-1ibbar"/> <option

name="ouput | evel " type="choi ce" choi ces="debug, vi ew, none"
def aul t =" none" trueval ue="--wth-outputlevel "/>

</ conmand>

The above example defines three possible options for the . / conf i gur ecommand. All of the options have four
common attributes: name, type, default, and truevalue. The name attribute is exactly what would be expected, the
name that the user will see when configuring this option. The type attribute may be either st ri ng, bool ean, or
choi ce. The default attribute defines what the value should be by default, which is required for installation in
simple mode. Finally the truevalue attribute defines what is appended to the command if the option is enabled or if a
option of type boolean is selected. For example, if option f 0ois enabled and the default value is left untouched the
resulting string - -wi t h-1 i bf oo=/usr/l ocal /1ib/1i bf oo. awill be appended to the command. Packagers
are encouraged to expose al possible command-line options to the users through ReST as the packager is more
knowledgeable about the software included than the user. Additional information about the opt i ontag can be
found in the reference section at the end of this document.

11



Draft The Packager GUI Draft

Actions

ReST actions are commands that exist on systems after a software package has been installed. For a piece of server
software, for example, this could include starting, stopping, and restarting the server. An act i onis simply awrap-
per around one or more conmandtags, much like each of the six steps described above, except that the act i ontag
requires a name for the action. Actions can be run by the ReST Installer immediately after installation is complete or
by the ReST Explorer at any time after package installation. Below are pictures of the Action setup GUI and an
XML example of a package action.

Figure2.9. The Action Setup Panel

fe ackions  [(H-] pame:| Get System Info
ID: sysInfa
':} o, Tooltip: B ins swatem ukilibe shrwi info about the syskem
WG '|F'J_|r|5 system utility showing all the info abouk the syskem
T
= Setup Achions k] |Runs system utility 5_|"|'|:I'.".1|'!;| all the info about the systam | — —_—

Z Commands
f=I uname il uptl:njll (=]

2 Commands [+

=) unarme {1 option) HEE

Zommand Yalue: | yname L

Cornmand I | command? 3 I

Error Message: | uname Failed -
Stakus Message! | Executing uname -
L [o]

Descripkion:
[ ] Grouped command
Opkions
hostname (1 aption) (=]

] Back ] [ Finish ]

Important elements of the action panel

To add an Action to the package, click on the + button on the top right next to the "Actions" label (Figure 2.9). This
will add an action to the list below the actions label. The action attributes can be set in the form to the right of the
Actions + and - buttons. All value of the action, Name, ID, Tooltip and Description should be entered. Added com-
mands to and actions is done the same way as to the six command sections and the action commands may also have
command options that are also added in the same manner asin the " Setup Commands" panel (see Figure 2.10).

Figure 2.10. The Action Command Option Setup Panel

12



Draft The Packager GUI Draft

T Title - |0 %
Fie Options Help
Craste Header Title: Setup Actions
Select Config Fies _ Create actions run alter packags installation i instaler and Explorsr
(= Dpkions
- Setup =l faet all infarmation | (H[) Moutthe system |
Option Mame: | [zet all information
, | ZCommands
Option IDY | unamesl - [~
T¥Pe! boalean -
Default: 0]
True Yalue: -5 -

Enable command by defaulk
Descriphion:

hastmame (1 option) R =

False Value:
[ ] Enable command by default L
Description: | | .

(7] back | [ Frsh |

Action Command option setup

Example 2.4. Package Actions XML

<actions> <action name="Start Server"
tooltip="Start a server."> <conmmand val ue="/ bi n/ bash
./start_server.sh" statusnsg="Starting Server"
errornsg="Failed to start server."/> </action>
<action name="Kill Server" tooltip="Kill a server.">
<command val ue="/bi n/bash ./kill_server.sh"
statusnmsg="Killing Server" errornsg="Failed to kill
server."/> </action> <action nane="Restart
Server" tool ti p="Restart a server."> <command
val ue="/bi n/bash ./kill _server.sh" statusnsg="Killing
Server" errornsg="Failed to kill server."/> <command
val ue="/bi n/bash ./start_server.sh" statusnsg="Starting
Server" errornsg="Failed to start server."/>
</ action> </actions>

13



Draft Draft

Chapter 3. Creating and using the
package file

In the graphical packager simply select "File->Save". From the command line it is a little more complicated. Once
the package XML has been written, stub configuration files have been created and source files have been gathered, it
istime to combine all of the filesinto a ReST package. Part of the ReST suiteisthe ReST Packager utility. This util-
ity combines al of the necessary files into one package for easy distribution. Below is an example of how the ReST
Packager is used.

Example 3.1. Running the ReST Packager .

> java -jar ReSTPackager.jar -X exanpl epackage. xm
-f exanple.rsp filel file2 stub.cfg

In the above example, the user has run the ReST Packager, which is included in the ReST suite to create a package
named examplerrsp. The - Xargument tells the ReST Packager to use exanpl epackage. xnl as the package
XML file for this package. The - f argument tells the packager the name of the file to create. The remaining argu-
ments tell the Packager which files to include. Every file that is declared in the package.xml must be included in the
Packager arguments. The resulting file can be distributed by whatever means desired and used with the ReST In-
staller.

Once the package file is created, it sSsimply needs to be installed from the ReST Installer. To install the package, run
the ReST Installer with the name of the package as an argument. The package can be local or placed on aweb serv-
er, athough larger packages will run more quickly if they are local. Here is an example of our package being used
by the ReST Instaler.

Example 3.2. Installing a Package

> java -jar ReSTlnstaller.jar exanple.rsp

14



Draft Draft

Chapter 4. Conclusions

The ReST package specification was designed to give packagers a flexible system for creating an application in-
staller for their software. This document should have given you the basic knowledge needed to build a package for
your software. More detailed information about the ReST package XML, including a full example can be found in
the reference pages of this document. For questions about ReST and to provide feedback or suggestions, please feel
encouraged to e-mail the authors of this document.

15



Draft Draft

Package XML Elements

16



Draft Draft

Name

act i on -- Commands that can be run after a package has been installed.

Description

Once a package has been installed there may be some commands that a user will be able to run. ReST calls these
commands "actions" and allows them to be run in the Installer immediately after an installation or by the Explorer at
any time after the package has been installed.

Atrributes

e name (required) - How the action should be known
* tooltip (required) - Thiswill appear as atooltip in the ReST applications

e id (optional) - A unique id for this action within the package. This is only needed if there are dependencies
between actions.

» depends (optional) - A comma-separated list of action ids on which this action depends.

Parents

The following elements are valid parents of act i on: acti ons.

Children

The following elements are children of act i on: command.

Example

Example 7. Action Example

<action nane="Start Server" tooltip="Start a server.">
<command val ue="/bi n/bash ./start_server.sh" statusnsg="Starting Server"
errornsg="Failed to start server."/>
</ action>

17



Draft

Draft

Name

act i ons -- Wrapper element for multiple action elements.

Description

This element appearsin the ReST package header and contains 1 or more act i on elements.

Parents

The following elements are valid parents of act i ons: header .

Children

The following elements are children of act i ons: acti on.

Example

Example 8. Actions Example

<actions>
<action nane="Start Server" tooltip="Start a server.">
<command val ue="/bi n/ bash ./start_server.sh" statusnsg="Starting Server"
errornmsg="Failed to start server."/>

</ action>
<action name="Kill Server" tooltip="Kill a server.">
<command val ue="/bi n/bash ./kill_server.sh" statusnsg="Killing Server"

errornsg="Failed to kill server."/>
</ actions>

18



Draft Draft

Name

backgr oundcol or -- Declare the background color that should be used in the ReST applications when referen-
cing this package.

Description
If the backgr oundcol or element appears in an application's attributes then the declared color will be used in-

stead of the default background color for applications referencing this package. The color should be given in hex
notation as would be given in HTML code.

Parents

The following elements are valid parents of backgr oundcol or: expl orerattri butes,installerat-
tributes,monitorattributes.

Children

The following elements are children of backgr oundcol or : No Children.

19



Draft Draft

Name

backgr oundi mage -- Declare the background image that should be used in the ReST applications when referen-
cing this package.

Description
If the backgr oundi nage element appears in an application's attributes then the given image will appear as awa-

termark in the background of ReST applications as they refernce this package. The image could be included in the
ReST package or reference an image that appears in aweb space.

Parents

The following elements are valid parents of backgr oundi nage: expl orerattri butes,installerat-
tributes,monitorattributes.

Children

The following elements are children of backgr oundi mage: No Children.

20



Draft Draft

Name

base -- Givesthe base directory for this package.

Description
By defining a base directory for a package, multiple packages can be organized to share a common space. This is

useful for organizing libraries, which can be given a base of libs, or software packages that include several plugable
or optional components that may beinstalled at alater time.

Parents

The following elements are valid parents of base: header .

Children

The following elements are children of nane: No Children.

21



Draft Draft

Name

checksunuri -- Givethe uri to afile that contains the checksum for this package.

Description

When a package is created with the ReST packager a checksum is printed, which can be placed in a file on a web-
space. This element points to such afile to give the ReST application the ability to verify the package before using
it. This behavior is optional. ReST packages already contain checksums of the files contained, which are verified

when a package is used; package checksums are in addition to this behavior. At the current time checksunuri is
not supported, but will be added to future versions of ReST.

Attributes

» forcechecksum - If set to true, ReST applications will not accept a package that does to match the given check-
sum. If set to false, the application will simply warn that the checksum does not match. If forcechecksum does
not appear, falseis assumed.

Parents

The following elements are valid parents of chucksururi : header .

Children

The following elements are children of chucksurur i : No Children.

22



Draft Draft

Name

command -- Run acommand on the remote system.

Description

The comand tag declares a single command to be run on the remote system. By default thiscommand isrunin a/
bi n/ bash environment and commands should be written with thisin mind. A command contains 0 or more op-
t i on tags, allowing the command to be configured from the ReST application's GUI.

Attributes

» vaue (required) - The command to be run.

» shell (optional) - The shell in which to run the command. At thistime shel | is not supported, but support will
be added in future versions of ReST.

» required (optional) - If the user should be given the option to not run this command, r equi r ed should be set to
false. If r equi r ed isnot given, the command will be run.

e grouped (optional) - If running the command on one machine in a given logical group is sufficient, set
grouped="true",if gr ouped isnot given or gr ouped=""f al se" the command will be run on every ma-
chineinthelogica group.

* id (optional) - A unique id given to this command, which is used if command dependencies exist. Dependencies
are not supported at thistime.

» depends (optiona) - A comma-separated list of ids on which this command depends. Dependencies are not sup-
ported at thistime.

« errormsg (optional) - A short message that should be displayed as the status of a given location if the command
fails.

» statusmsg (optional) - A short message that will be displayed as the status of a given location as it runs a com-
mand.

» description (optional) - A description of the command, used to help users understand the commands as they are
configured.

» forceConfigure (optional) - By default command options are only configured in Advanced Mode for a given
ReST application. However, if agiven command must be configured, set f or ceConf i gure="true".

Parents

The following elements are valid parents of command: act i on, conpi | ati on, conpl eti on, confi gur a-
tion,installation,preparation,uninstallation.

Children

The following elements are children of command: opt i on.

23



Draft

conmand

Draft

Example

Example 9. Command Example

<command val ue="nake" grouped="true">

<opti on
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
<option
</ command>

"

t ype="bool ean'
t ype="bool ean"
t ype="bool ean"
t ype="bool ean"
t ype="bool ean"
t ype="bool ean"
t ype="bool ean"
t ype="bool ean
t ype="bool ean
t ype="bool ean"
t ype="bool ean"
t ype="bool ean"
t ype="bool ean"
t ype="bool ean"
t ype="bool ean"
t ype="bool ean
t ype="bool ean"
t ype="bool ean"

"

"

"

trueval ue="st andard" nanme="St andard" enabl ed="true"/>

trueval ue="al |l * name="All"/>

trueval ue="server" nane="Server"/>
trueval ue="agent" nane="Agent"/>
trueval ue="C" nanme="C'/ >

trueval ue="Fortran" nane="Fortran"/>
trueval ue="nmat | ab" nane="Mat !l ab"/ >
trueval ue="oct ave" nane="Cct ave"/>
trueval ue="mat hemati ca" nane="Mat hemati ca"/ >
trueval ue="gridrpc" nanme="Gi dRPC'/>
trueval ue="pdf gui " name="PDF Gui"/>
trueval ue="t ool s" nane="Tool s"/>
trueval ue="w appers" nanme="W appers"/>
trueval ue="tester" nane="Tester"/>

trueval ue="regress" nanme="Regression Test Suite"/>

trueval ue="cl ean" nane="Cl ean"/>
trueval ue="confi gcl ean" nane="Confi gcl ean"/>

trueval ue="CLEAN" nane="C ean every architecture"/>

24



Draft Draft

Name

conpi | ati on -- The 3rd of the 5 steps to installing a package.

Description

Thisisthe 3rd of the 5 steps to installing a package, occuring after configuration and before installation. Commands
that relate to compiling the contained software should be done in this step.

Parents

The following elements are valid parents of conpi | ati on: package.

Children

The following elements are children of conpi | at i on: comrand.

25



Draft Draft

Name

conpl eti on -- The 5th of the 5 steps to installing a package.

Description

Thisis the 5th of the 5 steps to installing a package, occuring after installation. Commands that must be run after a
package is installed or relate to cleaning up the build area, such as removing unneeded files should be placed in this
step.

Parents

The following elements are valid parents of conpl et i on: package.

Children

The following elements are children of conpl et i on: conmand.

26



Draft

Name

confi gfil e -- Declare afile that must be configured by the user.

Description

A package may contain configuration files for the packaged software. These files will be configured from the GUI
by theuser. Theconfi gf i | e will contain several sub tags, which define tokens that will be replaced in the file.

Attributes

» packagefile (required) - The name of thefile asit is contained in the package.

» remotefile (required) - The name of the file asit should be on the remote system. This can be arelative pathname

(ex. src/file.conf).

» description (optional) - A description of the file's purpose or conventions.

» forceConfigure (optional) - If f or ceConfi gure="true" the user will be required to edit the file, even if
they are not in Advanced Mode in the ReST application. If f or ceCongf i gur e is not declated or f or ce-

Confi gure="f al se" thedefaultswill be used for all substitutions.

Parents

The following elements are valid parents of conf i gf i | e: header.

Children

The following elements are children of confi gf i | e: sub.

Example

Example 10. Configfile XML Example

<configfile packagefil e="server_config"

<sub
<sub
<sub
<sub

<sub

renot ef i | e=" Net Sol ve- 2. 0/ server _confi g"
descri pti on="Net Sol ve Server Configuration File">
name="nproc" descripti on="Nunber of processors"
defaul t="2" type="string"/>
name="agent" descripti on="The Net Sol ve Agent host nane"
def aul t =" net sol ve. cs. ut k. edu” type="string"/>
nane="scrat ch" description="Scratch Directory"
defaul t="/tnmp/" type="string"/>
name="npi hosts" descri pti on="Nunber of MPI Hosts"
def aul t ="4" type="string"/>
name="wor kl oadmax" descri pti on="Maxi num al | owabl e wor kl oad"
defaul t="-1" type="string"/>

</configfile>

Example 11. Sample Configuration File Stub

27



Draft

configfile

Draft

@PROC: Y%npr oc%

@AGENT: Yagent %

@\ORKLOADMAX: 9%nor kI oadnmax%
@BCRATCH: %scr at ch%

@Pl HOSTS ./ MPI machi nes %pi host s%

28



Draft Draft

Name

confi gurati on -- The 2nd of the 5 steps to installing a package.

Description
Thisisthe 2nd of the 5 steps to installing a package, occuring after preparation and before compilation. Commands

that relate to configuration for compilation (such as running conf i gur e scripts) should be done in this step. Con-
figuration files are sent to the remote location immediately before this step.

Parents

The following elements are valid parents of conf i gur at i on: package.

Children

The following elements are children of conf i gur ati on: command.

29



Draft Draft

Name

def -- Defines a substitution or command optioninapr e set.

Description

This element is used to define a command option (if type="option") or substitution (if type="sub") within apr e set.
See pr edef s for ausage example.

Attributes

» type (required) - Either option or sub, defining whether this definition is for a command option or configuration
substitution.

» ref (required) - Theid of the option or substitution to which this definition refers.

Parents

The following elements are valid parents of def : pr e.

Children

The following elements are children of def : No Children.

30



Draft Draft

Name

descri pti on -- Provide adescription of the package.

Description

A description of the software included in this package. This description should give users an understanding of the
software's purpose.

Parents

The following elements are valid parents of descri pti on: header .

Children

The following elements are children of descri pt i on: No Children.

31



Draft Draft

Name

expl orerattributes -- Contains attributes to customize the look and feel of the ReST Explorer for a specific
package.

Description

Contains attributes to customize the look and feel of the ReST Explorer for a specific package.

Parents

The following elements are valid parents of expl orerat tri but es: header.

Children

The following elements are children of expl orerattri but es: backgroundcol or, backgr oundi nage,
i con.

32



Draft Draft

Name

header -- Provide basic metadata about the package.

Description

This item contains the package metadata.

Parents

The following elements are valid parents of header : package.

Children

The following elements are children of header: acti on, acti ons, checksumnuri, configfile, de-
scription,explorerattributes,info,infouri,license,licenseuri,nmonitorattributes,
nane, packagedi r, packager, packagesrc, pat ch, predefs,titl e, packager, packager.

Example

Example 12. Package Header Example

<header >
<nanme>Net Sol ve</ nane>
<title>Net Solve Installer</title>
<ver si on>2. 0</ ver si on>
<descri pti on>Net Sol ve is a grid nmi ddl eware package</descri pti on>
<uri>http://icl.cs.utk.edu/ netsolve/</uri>

<l-- Basic information about the packager -->
<packager >
<nane>Jeff M Lar ki n</ nane>
<uri>mailto:larki n@s. utk. edu</uri>
</ packager >

<actions>
<action nane="Start Server" tooltip="Start a NetSol ve server.">
<command val ue="/bi n/bash ./start_server.sh" statusmsg="Starting Server"
errornmsg="Failed to start server."/>

</ acti on>
<action name="Kill Server" tooltip="Kill a NetSolve server.">
<command val ue="/bi n/bash ./kill _server.sh" statusnsg="Killing Server"
errornsg="Failed to kill server."/>
</ action>
</ acti on>

</ acti ons>

<configfile packagefil e="server_config"
renot ef i | e=" Net Sol ve- 2. 0/ server _confi g"
descri pti on="Net Sol ve Server Configuration File">
<sub nanme="nproc" descripti on="Nunber of processors"
defaul t="2" type="string"/>
<sub nanme="agent" descripti on="The Net Sol ve Agent host nane"
def aul t =" net sol ve. cs. ut k. edu” type="string"/>
<sub nane="scratch" description="Scratch Directory"
defaul t="/tnp/" type="string"/>
<sub nane="npi hosts" descri pti on="Nunber of MPI Hosts"
def aul t ="4" type="string"/>
<sub nanme="wor kl oadmax" descri pti on="Maxi mum al | owabl e wor kl oad"
defaul t="-1" type="string"/>
</configfile>
<!-- Package source(s). W can do both renmpbte and local files -->

33



Draft header Draft

<packagesr c>Net Sol ve- 2. 0. t gz</ packagesr c>
<packagesr c>confi g. guess</ packagesr c>
<packagesrc>start_server. sh</ packagesrc>
<packagesrc>ki || _server. sh</ packagesrc>

<installerattributes>
<backgr oundi mage>htt p: / / waw. cs. ut k. edu/ ~neek/ i cl / GSAP/ net sol ve_bg. png</ backgr oundi mage>
<icon>http://icl.cs.utk.edu/favicon.ico</icon>
</installerattributes>
</ header >




Draft Draft

Name

i con -- Definesthe icon to appear in thetitlebar of a ReST application when referencing this ReST package.

Description

If i con is given in expl orerattributes,installerattributes, nonitorattributes and icon
will appear in the titlebar of the related ReST application when referencing this package.

Parents

The following elements are valid parents of i con: expl orerattri butes,installerattributes, non-
itorattributes.

Children

The following elements are children of i con: No Children.

35



Draft Draft

Name

i nf o -- Give additional information about the software contained in this package.

Description

Thisis an optional tag to give additional information about the software contained in the package. The tag could be
used to display the contents of a README file, for instance.

Parents

The following elements are valid parents of i nf o: header .

Children

The following elements are children of i nf o: No Children.

36



Draft Draft

Name

i nfouri -- Give alink to atext file containing additional information about the software contained in this pack-
age.

Description

Thisis an optional tag to give additional information about the software contained in the package. The link should

point to atext file located on aweb server. The tag could be used to display the contents of a README file, for in-
stance.

Parents

The following elements are valid parents of i nf our i : header .

Children

The following elements are children of i nf our i : No Children.

37



Draft Draft

Name

i nstal | ati on -- The 4th of the 5 stepsto installing a package.

Description

Thisis the 4th of the 5 steps to installing a package, occuring after compilation and before completion. Commands
that relate to installing the software in its final location should be placed in this step.

Parents

The following elements are valid parents of i nst al | at i on: package.

Children

The following elements are children of i nst al | ati on: comrand.

38



Draft Draft

Name

i nstal l erattributes -- Contains attributes to customize the look and feel of the ReST Installer for a specific
package.

Description

Contains attributes to customize the look and feel of the ReST Installer for a specific package.

Parents

The following elements are valid parentsof i nstal | erattri but es: header.

Children

The following elements are children of i nstal | erattri but es: backgroundcol or, backgr oundi nage,
i con.

39



Draft Draft

Name

I i cense -- Define the licensing terms of the included software.

Description

License and licenseuri give the packager a way to provide licensing information about the enclosed software. Li-
cense elements should contain the text of the license while Licenseuri is simply alink to atext file containing the li-
cense. If Licenseuri is used, the ReST application will retrieve the license file and display its contents. Both ele-
ments are optional.

Example

Example 13. License Example

<license forceaccept="true">This is the license that you nust accept</I|icense>

Parents

The following elements are valid parentsof | i cense: header .

Children

The following elements are children of | i cense: No Children.

40



Draft Draft

Name

i censeuri -- Definethelicensing terms of the included software.

Description

License and licenseuri give the packager a way to provide licensing information about the enclosed software. Li-
cense elements should contain the text of the license while Licenseuri is simply alink to atext file containing the li-
cense. If Licenseuri is used, the ReST application will retrieve the license file and display its contents. Both ele-
ments are optional.

Example

Example 14. Licenseuri Example

<licenseuri forceaccept="true">http://exanple.comlicense.txt</l|icense>

Parents

The following elements are valid parentsof | i censeur i : header.

Children

The following elements are children of | i censeur i : No Children.

41



Draft Draft

Name

noni torattri butes -- Contains attributes to customize the look and feel of the ReST Monitor for a specific
package.

Description

Contains attributes to customize the look and feel of the ReST Monitor for a specific package.

Parents

The following elements are valid parents of noni t or att ri but es: header .

Children

The following elements are children of noni torattri but es: backgroundcol or, backgr oundi nage,
i con.

42



Draft Draft

Name

narme -- Gives the name of the packager.

Description

The name tag is used to provide the name of the packager. It is a generic element that could be extended for more
uses in the future.

Parents

The following elements are valid parents of name: packager .

Children

The following elements are children of nane: No Children.

43



Draft Draft

Name

opt i on -- Declares configurable options for acommand.

Description

Some commands may be configurable through command-line options. Using one or more opt i on tags within and
command allows users to customize these options viathe ReST GUI.

Attributes

* name (required) - The name to appear by the option during customization.

» default (required) - The default value for this option. This is appended to the command after the truevalue (if
typeis not boolean. This may be an empty string.

» type (required) - What type of substitution is this? Valid types are string (one line of text), choice (chosen from a
list), boolean (true/false).

» truevalue (required) - If type=boolean, thisis the value to to append to the command. If type is not boolean then
thiswill be appended to the command before the value input from the user. This can be an empty string.

» falsevalue (required only if type=boolean) - The value to append if typeis boolean and false is selected. This can
be an empty string.

» choices (required if type=choice) - A comma separated list of posshile choices for this option.

» customChoice (optional) - If the type is choice and this attribute is set to true then the user may choose from the
list of choices or give their own value for this option. If this attribute is false or not declared, the user is restricted
to the given choices.

» id (optional) - A uniqueid given to this option, which is used if option dependencies exist. Dependencies are not
supported at thistime.

e depends (optional) - A comma-separated list of ids on which this option depends. Dependencies are not suppor-
ted at thistime.

» enabled (optional) - If true this option will be turned on by default. If false or missing this option will be turned
off by default.

» description (optional) - A description of what this option does to the command.

Parents

The following elements are valid parents of opt i on: comand.

Children

The following elements are children of opt i on: No Children.

Example




Draft option Draft

See command for an example of how to use options.

45



Draft

Draft

Name

package -- The ReST Package root element.

Description

Thisisthe root element for a ReST package.

Attributes

» version (optional) - The version of this package. This does not necessarily match the version of the software con-

tained in the package.

Parents

The following elements are valid parents of package: No Parent.

Children

The following elements are children of package: conpi | ati on, conpl eti on, confi gur ati on, header,
installation,preparation,uninstallation.

Example

See ReST Package Maker's Guide Appendix for afull package example.

46



Draft Draft

Name

packagedi r -- Declare adirectory within the structure of the package file.

Description

If the packager wishes to create a package that contains a directory structure, rather than a flat package, each direct-
ory inside the package must be declared with apackagedi r tag.

Parents

The following elements are valid parents of packagedi r : header .

Children

The following elements are children of packagedi r : No Children.

47



Draft Draft

Name

packager -- Information about the person who created this ReST Package.

Description

Information about the person who created this ReST Package. This information could include name, contact inform-
ation, webpage, etc.

Parents

The following elements are valid parents of packager : header .

Children

The following elements are children of packager : nanme, uri .

48



Draft Draft

Name

packagesr c -- Declares afile that appearsin the ReST package.

Description

Every filethat is contained in a package must be declared with apackagesr ¢ tag, confi gfi | e tag, or apat ch
tag (but not multiple tags). Any other file that is contained in the package will be ignored.

Parents

The following elements are valid parents of packagesr c: header .

Children

The following elements are children of packagesr c¢: No Children.

49



Draft Draft

Name

pat ch -- Declares a patch file to be applied to the sources contained in this file. (NOT CURRENTLY SUPPOR-
TED)

Description

If the sources contained in this package need to be patched, a patch file can be included in the package and declared
with apat ch tag. The specifics of this patch file have not yet been determined and this tag is not yet supported by
ReST.

Parents

The following elements are valid parents of pat ch: header .

Children

The following elements are children of pat ch: No Children.

50



Draft Draft

Name

pr e -- A set of predefined options and substitutions.

Description
The pr e set gives developers a way to pre-define certain options and substitution cases for common installations.

For example, if certain options are suggested when installing on x86 Linux, apr e set may be defined for x86 Linux
installations. See pr edef s for a usage example.

Attributes

e name (required) - The name of this pre-defined set.
» description (optional) - A description of when this set is appropriate.

e id (optional) - A unique identifier for this set, used in package dependencies

Parents

The following elements are valid parents of pr e: pr edef s.

Children

The following elements are children of pr e: def .

51



Draft Draft

Name

pr edef s -- Provide groups of pre-defined command options and configuration substitutions.

Description

When the developer wishes to pre-define certain options and configuration substitutions to help users by simplifying
package configuration, the pr edef s group is used. These sets allow the user to suggest certain options and substi-
tutions for common installation cases. For example, the developer may define pre-defined sets for x86 Linux and
Solaris.

Parents

The following elements are valid parents of pr edef s: header .

Children

The following elements are children of pr edef s: pre.

Example

Example 15. Predef and Def Example

Exanple still to be witten.

52



Draft Draft

Name

pr epar ati on -- The 1st of the 5 stepsto installing a package.

Description

Thisisthe 1st of the 5 steps to installing a package, occuring before configuration. Commands that relate to compil-
ing the contained software should be done in this step.

Parents

The following elements are valid parents of pr epar at i on: package.

Children

The following elements are children of pr epar at i on: comand.

53



Draft Draft

Name

sub -- Defines a substitution that will be made in a configuration file.

Description

This element maps a substitution in a configuration file. This substitution is only relevant to the file defined by the
parent confi gf i | e tag.

Attributes

» name (required) - The token that will be substituted in the file. This token should not contain any spaces or spe-
cia characters.

» description (recommended) - A description of what this particular substitution does in the configuration file.

» format (optional) - This parameter is used to validate that the input is of the proper form. This is not currently
supported by ReST.

» default (required) - The default value is this substitution is not customized.

» type (required) - What type of substitution isthis? Valid types are string (one line of text), option (chosen from a
list), text (multiple lines of text), boolean (true/false).

» truevalue (required if type=boolean) - The value to subsitute if type is boolean and true is selected. This can con-
tain an empty string.

» falsevalue (required if type=boolean) - The value to subsitute if type is boolean and false is selected. This can
contain an empty string.

» choices (required if type=choice) - A comma separated list of posshile choices for this substitution.

» customChoice (optional) - If the type is choice and this attribute is set to true then the user may choose from the
list of options or give their own value for this substitution. If this attribute is false or not declared, the user isre-
stricted to the given choices.

Parents

The following elements are valid parents of sub: confi gfi | e.

Children

The following elements are children of sub: No Children.

Example

Seeconfi gf i | e for an example of how to use thistag.




Draft Draft

Name

title--Thetitlethewill appear in the ReST applications for this package.

Description

The title the will appear in the ReST applications for this package. If the title is longer than 32 characters long
(including spaces), an additional short title should be provided.

Atrributes

» role (optional) - If thisis some specidl title, like a short title, what role does it serve? By default the ReST applic-
ations only support role short, but other roles may be added.

Parents

Thefollowing elements are valid parentsof t i t | e: header .

Children

The following elements are children of t i t | e: No Children.

55



Draft Draft

Name

uni nst al | at i on -- An option additional step to define how to uninstall a package.

Description

This is the an optional step the defines how to uninstall a package. Commands that relate to deleting the contained
software should be donein this step.

Parents

The following elements are valid parents of uni nst al | at i on: package.

Children

The following elements are children of uni nst al | ati on: conmand.

56



Draft Draft

Name

uri -- A standard URI that may be used to provide more information about a package or package author.

Description

A standard URI that may be used to provide more information about a package or package author. This may include
amailto URI.

Parents

The following elements are valid parents of ur i : header , packager .

Children

The following elements are children of ur i : No Children.

57



Draft Draft

Name

ver si on -- Give the version of packaged software.

Description
The version of the software included in this package. This should be the software version and not a version for the

ReST package itself. The optional version attribute of package should be used instead to give a version of the ReST
package, if desired.

Parents

The following elements are valid parents of ver si on: header .

Children

The following elements are children of ver si on: No Children.

58



Draft Draft

Complete Package XML

59



Draft

Draft

Name

Complete Package XML Example -- Show the complete XML of a package.

Complete Package XML

Example 16. Example Package XML

<?xm version="1.0" encodi ng="UTF- 8" ?>
<package xm ns="http://icl.cs.utk.edu/ ReST/ Package/ 1. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schenma- i nst ance"
xsi : schemalLocation="http://icl.cs.utk. edu/ ReST/ Package/ 1.0
http://icl.cs.utk.edu/rest/restpackage-1_0.xsd">

<l-- Basic information about the software package -->
<header >
<title>NetSolve Installer</title>
<base>Net Sol ve</ base>
<ver si on>2. 0</ ver si on>
<descri pti on>Net Sol ve is a grid ni ddl eware package</descri pti on>
<uri>http://icl.cs.utk.edu/ netsolve/</uri>

<!-- Basic information about the packager -->
<packager >
<nane>Jeff M Lar ki n</ nanme>
<uri>mailto:larki n@s. utk.edu</uri>
</ packager >

<actions>
<action nane="Start Server" tooltip="Start a NetSol ve server.">
<command val ue="/bi n/bash ./start_server.sh" statusmsg="Starting Server"
errornsg="Failed to start server."/>

</ action>
<action name="Kill Server" tooltip="Kill a NetSolve server.">
<command val ue="/bi n/bash ./kill _server.sh" statusnsg="Killing Server"
errornsg="Failed to kill server."/>
</ action>
<action nane="Restart Server" tooltip="Restart a Net Sol ve server.">
<command val ue="/bi n/bash ./kill_server.sh" statusnsg="Killing Server"
errornsg="Failed to kill server."/>

<command val ue="/bi n/bash ./start_server.sh" statusnsg="Starting Server"
errornsg="Failed to start server."/>
</ action>
<action nane="Start Agent" tooltip="Start a NetSol ve Agent.">
<command val ue="/bi n/bash ./start_agent.sh" statusnsg="Starting Agent"
errormsg="Failed to start Agent"/>

</ action>
<action nanme="Kil|l Agent" tooltip="Kill a NetSolve Agent.">
<command val ue="/bi n/bash ./kill_agent.sh" statusnsg="Killing Agent"
errornsg="Failed to kill Agent"/>
</ action>
<action nane="Restart Agent" tooltip="Restart a Net Sol ve Agent.">
<command val ue="/bi n/bash ./kill_agent.sh" statusnsg="Killing Agent"
errornmsg="Failed to kill Agent"/>

<conmand val ue="/bi n/ bash ./start_agent.sh" statusnsg="Starting Agent"
errornsg="Failed to start Agent"/>
</ action>
</ actions>

<configfile packagefil e="server_config"
renot ef i | e=" Net Sol ve- 2. 0/ server _confi g"
descri pti on="Net Sol ve Server Configuration File">
<sub nane="nproc" descri pti on="Nunber of processors"
defaul t ="2" type="string"/>
<sub nane="agent" descripti on="The Net Sol ve Agent host nane"
def aul t =" net sol ve. cs. ut k. edu" type="string"/>
<sub nanme="scratch" description="Scratch Directory"
defaul t="/tnmp/" type="string"/>
<sub name="npi host s" descri pti on="Nunber of MPl Hosts"
def aul t ="4" type="string"/>

60



Draft Complete Package XML Example

Draft

<sub nane="wor kl oadmax" descri pti on="Maxi num al | owabl e wor kl oad"
defaul t="-1" type="string"/>
<sub nanme="testing" descripti on="Testing PDF"
trueval ue="" fal seval ue="#" type="bool ean" default="true"/>
<sub nanme="qgsort" descripti on="Qui ckSort PDF"
trueval ue="" fal seval ue="#" type="bool ean" default="true"/>
<sub nanme="area" description="Area PDF"

trueval ue="" fal seval ue="#" type="bool ean" defaul t="true"/>
<sub nane="nmandel brot" descri pti on="Mandel br ot PDF"

trueval ue="" fal seval ue="#" type="bool ean" default="true"/>
<sub nanme="bl as_subset" descri pti on="BLAS Subset PDF"

trueval ue="" fal seval ue="#" type="bool ean" default="true"/>

<sub nanme="I| apack_subset" descri pti on="LAPACK Subset PDF"

trueval ue="" fal seval ue="#" type="bool ean" defaul t="true"/>
<sub nane="I| apack" descri pti on="LAPACK PDF"

trueval ue="" fal seval ue="#" type="bool ean" defaul t="fal se"/>
<sub nanme="| apack_ext ended" descri pti on="LAPACK Ext ended Drivers PDF"

trueval ue="" fal seval ue="#" type="bool ean" defaul t="fal se"/>
<sub nane="scal apack" descri ption="SCALAPACK PDF"

trueval ue="" fal seval ue="#" type="bool ean" default="fal se"/>

<sub nanme="sparse_iterative_sol ve" description="Sparse Iterative Sol vers PDF"

trueval ue="" fal seval ue="#" type="bool ean" defaul t="fal se"/>

<sub nane="sparse_direct_sol ve" descripti on="Sparse Direct Sol vers PDF"

trueval ue="" fal seval ue="#" type="bool ean" defaul t="fal se"/>
<sub nane="ar pack" descri pti on="ARPACK PDF"
trueval ue="" fal seval ue="#" type="bool ean" defaul t="fal se"/>
<sub nane="t esti nggl obus" descri pti on="d obus Testing PDF"
trueval ue="" fal seval ue="#" type="bool ean" defaul t="fal se"/>
<sub nanme="restrictions" description="Maxi mum al | owabl e wor kl oad"
defaul t="" type="text">* 10</sub>
</configfile>
<configfil e packagefil e="MPl machi nes"
renot ef i | e=" Net Sol ve- 2. 0/ MPl nachi nes"
descri pti on="Net Sol ve MPI Hosts File">

<sub nanme="hosts" description="List of MPl Hosts" type="text" default="">

enterprise
enterprise
enterprise
enterprise
</ sub>
</configfile>
<configfil e packagefil e="netsol ve. env"
renot ef i | e="net sol ve. env"
descri pti on="Net Sol ve Environnent Vari abl es">
<sub nane="agent" descri pti on="Net Sol ve Agent"
def aul t =" net sol ve. cs. ut k. edu" type="string"/>
</configfile>
<!-- Package source(s). W can do both renote and local files -->
<packagesr c>Net Sol ve- 2. 0.t gz</ packagesr c>
<packagesr c>confi g. guess</ packagesr c>
<packagesrc>start_server. sh</ packagesrc>
<packagesrc>st art _agent . sh</ packagesrc>
<packagesrc>ki | | _agent. sh</ packagesrc>
<packagesrc>ki | | _server. sh</ packagesr c>

<installerattributes>

<backgr oundi mage>htt p: / / ww. cs. ut k. edu/ ~meek/ i cl /| GSAP/ net sol ve_bg. png</ backgr oundi nage>

<icon>http://icl.cs.utk.edu/favicon.ico</icon>
</installerattributes>
</ header >

<l-- Things to do before anything else -->

<pr epar at i on>
<command val ue="gunzip -f Net Sol ve-2.0.tgz" grouped="true"/>
<command val ue="tar -xf NetSolve-2.0.tar" grouped="true"/>
<command val ue="cd Net Sol ve-2.0/" grouped="fal se"/>

</ prepar ati on>

<l-- Configuration of the package before conpilation -->
<configuration>
<l-- This is the configure line -->
<command val ue="./confi gure" grouped="true">
<l-- One of the possible configure options -->
<option nane="|apack" type="text" default="/usr/local/lib/libpack.a"
trueval ue="--with-1apack="/>
<option nane="bl as" type="text" defaul t="/usr/local/lib/libblas.a"
trueval ue="--w th-bl aslib="/>
<option nane="petsc" type="text" default=""
trueval ue="--with-petsc="/>

<option nane="petsclibdir" type="text" default=

61



Draft

Complete Package XML Example

Draft

<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti

<opti

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

on

trueval ue="--w t h-petsclibdir="/>
nanme="aztec" type="text" defaul t=""

trueval ue="--w th-aztec="/>

name="azteclib" type="text" defaul t=""
trueval ue="--with-azteclib="/>

name="superl u" type="text" defaul t=""

trueval ue="--wth-superlu="/>
nane="superl ul i b" type="text" default=""
trueval ue="--w t h-super!l ul i b="/>

name="nma28" type="bool ean" defaul t="fal se"
trueval ue="--w t h- ma28"/ >

name="it pack" type="bool ean" defaul t="fal se"
trueval ue="--with-itpack"/>

name="ar packl i b" type="text" defaul t=""
trueval ue="--with-arpackl i b="/>

nane="npi " type="text" default=""

trueval ue="--with-npi =" fal seval ue="--without-npi"/>
name="scal apack" type="text" defaul t=""
trueval ue="--wit h-scal apackl i b="/>

name="bl acsli b" type="text" defaul t=""
trueval ue="--wth-blacslib="/>

name="m dk" type="text" defaul t=""

trueval ue="--w t h-nm dk="/>

nane="rpclib" type="text" default=""

trueval ue="--with-rpclib="/>

name="r pci nc" type="text" defaul t=""

trueval ue="--w th-rpci nc="/>
name="oct ave-i ncl ude" type="text" defaul t=""
trueval ue="--with-octave-incl ude="/>
name="gpg" type="text" defaul t="/usr/bin/gpg"
trueval ue="--w t h-gpg=" fal seval ue="--w t hout - gpg"/ >
name="bui | dgpg" type="text" defaul t=""

trueval ue="--with-buil dgpg="/>

name="nws" type="text" defaul t=""

trueval ue="--wth-nws="/>

name="i bp" type="text" defaul t=""

trueval ue="--with-ibp="/>

nane="ker beros" type="text" default=""

trueval ue="--wi t h- ker ber os"/ >

name="proxy" type="choi ce" choi ces="nestol ve, gl obus" defaul t=""
trueval ue="--w th-proxy "/>

name="ouput | evel " type="choi ce" choi ces="debug, vi ew, none" defaul t ="none"
trueval ue="--with-outputl evel "/>

name="i nf oserver" type="text" defaul t=

trueval ue="--enabl e-1 nfoserver"/>

</ conmand>
</ confi guration>

<!-- Source Conpilation -->
<conpi | ati on>
<command val ue="nake" grouped="true">

<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti
<opti

</ command>

on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on

t ype="bool ean"
t ype="bool ean"
t ype="bool ean"
t ype="bool ean"
t ype="bool ean"
t ype="bool ean"
t ype="bool ean"
t ype="bool ean"
t ype="bool ean"
t ype="bool ean"
t ype="bool ean"
t ype="bool ean"
t ype="bool ean"
t ype="bool ean"
t ype="bool ean"
t ype="bool ean"
t ype="bool ean"
t ype="bool ean"

</ conpi | ati on>

trueval ue="st andard" name="St andard" enabl ed="true"/>
trueval ue="all* name="All"/>

trueval ue="server" nane="Server"/>

trueval ue="agent" nane="Agent"/>

trueval ue="C" nanme="C'/ >

trueval ue="Fortran" name="Fortran"/>

trueval ue="mat | ab" nane="Matl ab"/ >

trueval ue="oct ave" nane="Cct ave"/ >

trueval ue="nmat hemat i ca" nanme="Mat hemati ca"/ >
trueval ue="gridrpc" nanme="Gi dRPC'/>

trueval ue="pdf gui " name="PDF Gui"/>

trueval ue="t ool s" nane="Tool s"/>
trueval ue="w appers" nanme="W appers"/>

trueval ue="tester" nane="Tester"/>

trueval ue="regress" nanme="Regression Test Suite"/>
trueval ue="cl ean" nanme="d ean"/>

trueval ue="confi gcl ean" nane="Confi gcl ean"/ >
trueval ue="CLEAN' nane="Cl ean every architecture"/>

<!-- Package Installation -->
<installation>

<!l --<command val ue="nmake install"/>-->
</installation>

<!-- dean-up what
<conpl eti on>
<command val ue="cd .

N>

is no | onger needed -->

62



Draft Complete Package XML Example Draft

<command val ue="rm -rf Net Sol ve-2
<command val ue="rm -rf Net Sol ve-2
</ conpl eti on>

ar" grouped="true"/>
gz" grouped="true"/>

— —

0
0

</ package>

63



