
U
nc

or
re

ct
ed

 P
ro

of

DOI: 10.1007/s10766-005-3584-4
International Journal of Parallel Programming, Vol. 33, No. 2, June 2005 (© 2005)

New Grid Scheduling1

and Rescheduling Methods2

in the GrADS Project3

F. Berman,1 H. Casanova,1 A Chien,1 K. Cooper,2 H. Dail,14
A. Dasgupta,2 W. Deng,3 J. Dongarra,4 L. Johnsson,55
K. Kennedy,2,6 C. Koelbel,2 B. Liu,5 X. Liu,1 A. Mandal,26
G. Marin,2 M. Mazina,2 J. Mellor-Crummey,2 C. Mendes,37
A. Olugbile, 1 M. Patel,5 D. Reed,3 Z. Shi,4 O. Sievert,18
H. Xia,1 and A. YarKhan49

Received �; revised �; accepted �

The goal of the Grid Application Development Software (GrADS) Project10
is to provide programming tools and an execution environment to ease pro-11
gram development for the Grid. This paper presents recent extensions to12
the GrADS software framework: a new approach to scheduling workflow13
computations, applied to a 3-D image reconstruction application; a simple14
stop/migrate/restart approach to rescheduling Grid applications, applied to a15

16

1Department of Computer Science and Engineering, University of California at San
Diego, San Diego, CA 92093. E-mail: {berman, casanova, achien, hdail, lxin, aoo,
osievert, huaxia}@ucsd.edu

2Computer Science Dept., Rice University, Houston, TX 77005. E-mail: {keith, anshuman,
ken, chk, anirban, mgabi, mmzn, johnmc}@rice.edu

3Department Computer Science, University of Illinois, Urbana, IL 61801. E-mail:
{weideng, cmendes, reed}@uiuc.edu

4Innovative Computing Lab, University of Tennessee, Knoxville, TN 37996. E-mail:
{dongarra,yarkhan,shi}@utk.edu

5Department Computer Science, University of Houston, Houston, TX 77204. E-mail:
{johnsson,bliu2,mpate}@uh.edu

6To whom correspondence should be addressed.

13

0885-7458/04/0200-0013/0 © 2004 Springer Science+Business Media, Inc.

Journal: IJPP CMS: NY00003584 TYPESET � DISK LE � CP Disp.: 6/5/2004 Pages: 21



U
nc

or
re

ct
ed

 P
ro

of

14 Berman et al.

QR factorization benchmark; and a process-swapping approach to rescheduling,17
applied to an N-body simulation. Experiments validating these methods were18
carried out on both the GrADS MacroGrid (a small but functional Grid) and19
the MicroGrid (a controlled emulation of the Grid).20

KEY WORDS: Grid computing; scheduling; rescheduling.

21

22

1. INTRODUCTION23

Since 1999, the Grid Application Development (GrADS) Project has24
worked to enable an integrated computation and information resource25
based on advanced networking technologies and distributed information26
sources. In other words, we have been attacking the problems inherent27
in Grid computing.(1) In theory, the Grid connects computers, databases,28
instruments, and people into a seamless web of advanced capabilities. In29
practice, its lack of usability has limited its application to specialists.30

Because the Grid is inherently more complex than stand-alone com-31
puter systems, Grid programs must reflect this complexity at some level.32
However, we believe that this complexity should not be embedded in the33
main algorithms of the application, as is often now the case. Instead,34
GrADS provides software tools that manage the Grid-specific details of35
execution with minimal effort by the scientists and engineers who write the36
programs. This increases usability and allows the system to perform sub-37
stantial optimizations for Grid execution.38

Figure 1 shows the program development framework that GrADS39
pioneered in response to this need.(2) Two key concepts are central to this40
approach. First, applications are encapsulated as configurable object pro-41
grams (COPs), which can be optimized rapidly for execution on a spe-42
cific collection of Grid resources. A COP includes code for the application,43
a mapper that determines how to map an application’s tasks to a set of44
resources, and a performance model that estimates the application’s perfor-45
mance on a set of resources. Second, the system relies upon performance46
contracts that specify the expected performance of modules as a function47
of available resources.48

The left side of Fig. 1 depicts tools used to construct COPs from49
either domain-specific components or low-level (e.g. MPI) programming.50
In either case, GrADS provides prototype tools that semi-automatically51
construct performance models and mappers. Although they are not the52
major focus of this paper, some of these tools are described in more detail53
in Section 3 below.54



U
nc

or
re

ct
ed

 P
ro

of

New Grid Scheduling and Rescheduling Methods in the GrADS Project 15

Fig. 1. GrADS Program Preparation and Execution Architecture.

The right side of Fig. 1 depicts actions when a COP is delivered55
to the execution environment. The GrADS infrastructure first determines56
which resources are available and, using the COP’s mapper and perfor-57
mance model, schedules the application components onto an appropriate58
subset of these resources. Then the GrADS software invokes the binder to59
tailor the COP to the chosen resources and the launcher (not shown) to60
start the tailored COP on the Grid.61

Once launched, execution is tracked by the contract monitor, which62
detects anomalies and invokes, when necessary, the rescheduler to take63
corrective action. Performance monitoring in GrADS is based on Auto-64
pilot,(3) a toolkit for real-time application and resource monitoring and65
closed-loop control. Autopilot provides sensors for performance data66
acquisition, actuators for implementing optimization commands and a67
decision-making mechanism based on fuzzy logic. Part of the tailoring68
done by the binder is to insert the sensors needed for monitoring a par-69
ticular application. Autopilot then assesses the application’s progress using70
performance contracts,(4) which specify an agreement between application71
demands and resource capabilities. The contract monitor takes periodic72
data from the sensors and uses Autopilot’s decision mechanism to ver-73
ify that the contract is being met. If a contract violation occurs, the74
monitor takes corrective action, such as contacting a GrADS rescheduler.75
GrADS incorporates a variety of utilities associated with contract moni-76
toring, including a Java-based Contract Viewer GUI to visualize the per-77
formance contract validation activity in real-time.78

To support research into and evaluation of GrADS capabilities,79
GrADS has constructed two research testbeds. The MacroGrid consists80
of Linux clusters with GrADS software installed at several participat-81
ing GrADS sites, including clusters at University of California at San82



U
nc

or
re

ct
ed

 P
ro

of

16 Berman et al.

Diego (UCSD, 10 machines), University of Tennessee at Knoxville (UTK,83
24 machines), University of Illinois at Urbana-Champaign (UIUC, 2484
machines), and University of Houston (UH, 24 machines). The experi-85
ments in Section 3 and Section 4.1 run on this testbed. The MicroGrid is86
a Grid emulation environment that runs on clusters and permits experi-87
mentation with extreme variations in network traffic and loads on com-88
pute nodes.(5) Section 4.2 describes experiments run on this platform. (We89
earlier ran very similar experiments on the MacroGrid, validating both the90
MicroGrid’s emulation and the rescheduling method’s practicality.(6))91

The experiments we describe exercise many parts of the GrADS envi-92
ronment. This paper closes with a brief discussion of what we learned93
from these experiences, and an outline of future work.94

2. LAUNCHING COMPONENTS ON THE GRID95

Once an application schedule has been chosen, the GrADS applica-96
tion manager must prepare the configurable object program and map it97
onto the selected resource configuration. In turn, the application man-98
ager invokes the binder, which is responsible for creating and configur-99
ing the application executable, instrumenting it, and then launching it on100
the Grid. The original GrADS binder did most of its work by editing the101
entire application binary, which limited its applicability to homogeneous102
collections of processors (such as our original testbed). It soon became103
clear that this approach would not suffice for a general system because104
most grids (including later generations of our own testbed) are heteroge-105
neous and because many grid programs require linking against libraries of106
components preinstalled on Grid resources.107

To address these issues, we developed a new distributed GrADS binder108
that executes on all Grid resources specified in the schedule. The new binder109
receives three sets of inputs: resource specific information (such as hardware110
and software capabilities) via the GrADS Information Service (GIS), char-111
acteristics of the target architecture that can be used for machine-specific112
optimizations, and a compilation package that consists of the application’s113
source code in an intermediate representation, a list of required libraries,114
and a script to configure the application for compilation.115

A binder process executes on each machine chosen by the scheduler.116
For this to be possible, the global binder must know the locations of all117
software resources, including application-specific libraries, general libraries,118
and the binder itself. To that end, the global binder queries the GIS to119
locate necessary software on the scheduled node, starting with the local120
binder code. The global binder then launches the local binder process,121
which further queries GIS for the locations of application-specific libraries,122



U
nc

or
re

ct
ed

 P
ro

of

New Grid Scheduling and Rescheduling Methods in the GrADS Project 17

instruments the code with Autopilot sensors, configures, compiles, and123
links the application. Finally, the global binder enables the launch of124
the application. If the application is an MPI application, then a global125
synchronization must be carried out as part of the MPI protocol at the126
beginning of the execution. In this case, the binder returns control to the127
application manager which launches the application after synchronization.128
In non-MPI applications, the binder launches the application and notifies129
the application manager when the program terminates.130

Note that by using a high-level representation of the program and131
configuring and compiling it only at the target machine, the binder nat-132
urally deals with heterogeneous resources. This is important in any Grid133
context. Moreover, preserving high-level program information until the134
target machine is known also provides opportunities for architecture-135
specific optimizations.

136

3. SCHEDULING WORKFLOW GRAPHS137

Workflow applications are an important class of programs that can138
take advantage of the power of Grid computing, such as the LIGO(7) pul-139
sar search image processing applications.(8) As the name suggests, a work-140
flow application consists of a collection of components that need to be141
executed in a partial order determined by control and data dependences.142

The previous version of the GrADS scheduler was designed to sup-143
port tightly-coupled MPI applications(9–11) and was not well suited to144
workflow applications. On the other hand, existing approaches to work-145
flow scheduling, such as Condor DAGMan,(12) are not able to effectively146
exploit the performance modeling available within GrADS to produce147
better schedules. To address these shortcomings, we developed a new148
GrADS workflow scheduler that resolves the application dependences and149
schedules the components, including parallel components, onto available150
resources using GrADS performance models as a guide.151

3.1. Workflow Scheduling152

A Grid scheduler for a workflow application must be guided by an153
objective function that it tries to optimize, such as minimizing communi-154
cation time or maximizing throughput. For the GrADS Project, we have155
chosen to minimize the overall job completion time, also known as the156
makespan, of the application. The GrADS scheduler builds up a model of157
Grid resources using services such as MDS(13) and NWS.(14) The sched-158
uler also obtains performance models of the application using a scalable159
technique developed for GrADS. Using these models, the scheduler then160
provides a mapping from the workflow components to the Grid resources.161



U
nc

or
re

ct
ed

 P
ro

of

18 Berman et al.

A stricter definition of the problem can be formulated with the162
help of two sets: the set C = {c1, c2, . . . , cm} of available application163
components from the application DAG, and the set G = {r1, r2, . . . , rn} of164
available Grid resources. The goal of the scheduler is to construct a map-165
ping from elements of C onto elements of G.166

For each application component, the GrADS workflow scheduler167
ranks each eligible resource, reflecting the fit between the component and168
the resource. Lower rank values, in our convention, indicate a better169
match for the component. After ranking the components, the scheduler170
collates this information into a performance matrix. Finally, it runs heu-171
ristics on the performance matrix to schedule components onto resources.172

Computing rank values The scheduler ensures that resources meet cer-
tain minimum requirements for a component. Resources that do not qual-
ify under these criteria are given a rank value of infinity. For all other
resources, the rank of the resource rj is calculated by using a weighted
sum of the expected execution time on the resource and the expected cost
of data movement for the component ci :

rank(ci, rj ) = w1 × eCost (ci, rj ) + w2 × dCost (ci, rj ) (1)

The expected execution time eCost is calculated using a performance173
modeling technique that will be described in the next section. The cost of174
data movement dCost is estimated by a product of the total volume of data175
required by the component and the expected time to transfer data given176
current network conditions. For this measurement, NWS is used to obtain177
an estimate of the current network latency and bandwidth. The weights w1178
and w2 can be customized to vary the relative importance of the two costs.179

Scheduling application components Once ranks have been calculated, a180
performance matrix is constructed. Each element of the matrix pij denotes181
the rank value of executing the ith component on the j th resource. This182
matrix is used by the scheduling heuristics to obtain a mapping of com-183
ponents onto resources. Such a heuristic approach is necessary since the184
mapping problem is NP-complete.(15) We apply three heuristics to obtain185
three mappings and then select the schedule with the minimum makespan.186
The heuristics that we apply are the min-min, the max-min, and the suffer-187
age heuristics.(16,17)188

3.2. Component Performance Modeling189

As described in the previous section, estimating the performance190
of a workflow component on a single node is crucial to construct-191
ing a good overall workflow schedule. We model performance by build-192
ing up an architecture-independent model of the workflow component193



U
nc

or
re

ct
ed

 P
ro

of

New Grid Scheduling and Rescheduling Methods in the GrADS Project 19

from individual component models. To obtain the component models, we194
consider both the number of floating point operations executed and the195
memory access pattern. We do not aim to predict an exact execution196
time, but rather provide an estimated resource usage that can be converted197
to a rough time estimate based on architectural parameters. Because the198
resources are architecture-independent, our models can be used on widely199
varying node types.200

To understand the floating point computations performed by an201
application, we use hardware performance counters to collect operation202
counts from several executions of the program with different, small-size203
input problems. We then apply least squares curve-fitting on the collected204
data.205

To understand an application’s memory access pattern, we collect206
histograms of memory reuse distance (MRD)—the number of unique207
memory blocks accessed between a pair of references to the same block—208
observed by each load and store instruction.(18) Using MRD data col-209
lected on several small-size input problems to the application, we model210
the behavior of each memory instruction, and predict the fraction of hits211
and misses for a given problem size and cache configuration. To deter-212
mine the cache miss count for a different problem size and cache config-213
uration, we evaluate the MRD models for each reference at the specified214
problem size, and count the number of accesses with predicted reuse dis-215
tance greater than the target cache size.216

3.3. Workflow Scheduling Test Case217

In this section, we apply some of the strategies described in the previ-218
ous sections to the problem of adapting EMAN,(19) a bio-imaging applica-219
tion developed at Baylor College of Medicine, for execution on the Grid220
using the GrADS infrastructure. EMAN automates a portion producing221
3-D reconstructions of single particles from electron micro-graphs. Human222
intervention and expertise is needed to define a preliminary 3-D model223
from the electron micro-graphs, but the refinement from a preliminary224
model to the final model is fully automated. This refinement process is the225
most computationally intensive step and benefits the most from harness-226
ing the power of the Grid. Figure 2 shows the components in the EMAN227
refinement workflow, which forms a linear graph in which some compo-228
nents can be parallelized.229

We have conducted experiments on workflow scheduling with two230
EMAN data-sets-GrOEL, a small data-set with 200 MB input data and231
rdv, a medium data-set with 2 GB input data. For these experiments, we232
used 6 nodes from the Itanium IA-64 cluster [i2-53 to i2-58] at UH and 7233



U
nc

or
re

ct
ed

 P
ro

of

20 Berman et al.

Fig. 2. EMAN refinement workflow.

nodes from the IA-32 cluster [torc1 to torc7] at UTK. Note that the test-234
bed is heterogeneous in terms of architecture, CPU-speeds, memory and235
storage. Also, note that “classesbymra” is the most computationally inten-236
sive step in the EMAN refinement and is a parameter sweep that can be237
distributed across multiple clusters. “classalign2” on the other hand can-238
not be distributed across multiple clusters.239

Table-I shows the results of the run of the rdv data on unloaded240
resources on the testbed. The first column represents the name of the com-241
ponent in the linear DAG. The second column denotes the resources cho-242
sen by the Workflow scheduler for the particular component. The third243
column denotes the number of instances mapped by the Workflow sched-244
uler to the selected resources. The last column denotes the time it took for245
that component to run on the selected set of resources.246

For the sequential and single-cluster components, the scheduler chose247
the best node or cluster for execution. The interesting case is the case of248
the parameter sweep step called “classesbymra”. From the execution time249
of the “classesbymra” step, the following can be inferred:250

— The makespan of the “classesbymra” step was 84 h 30 min [the251
time the instances finished on the UH cluster]. Since the instances252
at the UTK machines finished in 81 h 41 min, it can be inferred253



U
nc

or
re

ct
ed

 P
ro

of

New Grid Scheduling and Rescheduling Methods in the GrADS Project 21

Table I. Results of EMAN Workflow Execution with rdv Data

Component Resources Chosen Num Instances Component Exec Time

Proc3d i2-58 1 <1 min
Project3d i2-58 1 1 h 48 min
Proc2d i2-58 1 <1 min
Classesbymra i2-53 to i2-58 68 [i2-*] 84 h. 30 min

torc1 to torc7 42 [torc*] 81 h. 41 min
Classalign2 i2-53 to i2-58 379 45 min
Make3d i2-58 1 47 min
Proc3d i2-58 1 <1 min
Proc3d i2-58 1 <1 min

that the load was optimally balanced across the two clusters since254
the granularity of a single instance is greater than 7 h.255

— The optimal load balance is primarily due to accurate performance256
models and efficient Work-flow scheduling. Rank of a “classes-257
bymra” instance on a node in UH cluster was 5077.76 and on a258
node in UTK cluster was 8844.91.259

For the GrOEL data-set, the makespan for the classesbymra step for260
heuristic scheduling was compared with that obtained from random sched-261
uling. Random scheduling picks a node randomly for the next available262
instance. The results in Table-II use 2 nodes from the UH cluster and263
7 nodes from the UTK cluster and all the resources are unloaded. The264
number in the braces after execution times indicate the average number of265
classesbymra instances mapped to the site. From these results, it can be266
inferred that accurate relative performance models on heterogeneous plat-267
forms combined with heuristic scheduling result in good load balance of268
the classesbymra instances when the grid resources are unloaded. Heuris-269
tic scheduling is better than random scheduling by 25 percent in terms of270
makespan length.271

The second set of results shows the effect of loaded machines on272
the quality of schedule. Five loaded nodes from the UH cluster and 7273
unloaded nodes from UTK cluster were used for these experiments. From274
the results in Table-III, it is observed that there is uneven load balance due275
to loading of the UH nodes. Random scheduling does better because the276
random distribution maps more instances to the unloaded UTK cluster277
which had more nodes in the universe of resources. So, it can be inferred



U
nc

or
re

ct
ed

 P
ro

of

22 Berman et al.

Table II. Results for GrOEL Data with Unloaded Resources

Heuristic Run Average Random Run Average

Exectime(uh) 12 min 42 sec [38] 6 min 3 sec [17]
Exectime(utk) 11 min 47 sec [60] 15 min 48 sec [81]
Makespan 12 min 42 sec 15 min 48 sec

Table III. Results for GrOEL Data with Loaded Resources

Heuristic Run Average Random Run Average

Exectime(uh) 16 min 41 sec [60] 6 min 38 sec [44]
Exectime(utk) 7 min 51 sec [38] 10 min 28 sec [54]
Makespan 16 min 41 sec 10 min 28 sec

that for performance model based scheduling to work, either the underly-278
ing set of resources should be reliable [implying advanced reservation] or279
the variability of resource performance can be predicted and taken into280
account during scheduling.281

The third set of results show the effect of inaccurate performance282
models on the quality of schedule. A rank value of 4.57 instead of 7.60283
was used for a classesbymra instance on a UH node. Rank value for284
the UTK nodes was kept correct. Six nodes from the UH cluster and 7285
nodes from the UTK cluster were used. From the results in Table-IV it286
can be inferred that, inaccurate relative performance models on different287
heterogeneous platforms result in poor load balance of the classesbymra288
instances.289

Table IV. Results for GrOEL Data with Inaccurate Performance Models

Heuristic Run Average Random Run Average

Exectime(uh) 21 min 37 sec [77] 5 min 24 sec [45]
Exectime(utk) 3 min 57 sec [21] 10 min 30 sec [53]
Makespan 21 min 37 sec 10 min 30 sec



U
nc

or
re

ct
ed

 P
ro

of

New Grid Scheduling and Rescheduling Methods in the GrADS Project 23

4. RESCHEDULING290

Normally, a contract violation activates the GrADS rescheduler. The291
retcheduling process must determine whether rescheduling is profitable,292
based on the sensor data, estimates of the remaining work in the appli-293
cation, and the cost of moving to new resources. If rescheduling appears294
profitable, the rescheduler computes a new schedule (using the COP’s map-295
per) and contacts rescheduling actuators located on each processor. These296
actuators use some mechanism to initiate the actual migration or load bal-297
ancing. Sections 4.1 and 4.2 describe two rescheduling mechanisms that298
we have explored. Both rely on application-level migration, although we299
designed both so that the required additional programming is minimal.300
Whether a migration is done or not, the rescheduler may contact the con-301
tract monitor to update the terms of the contract.

302

4.1. Rescheduling by Stop and Restart303

Our first approach to rescheduling relied on application migration304
based on a stop/restart approach. The application is suspended and305
migrated only when better resources are found for application execution.306
When a running application is signaled to migrate, all application pro-307
cesses checkpoint user specified data and terminate. The rescheduled exe-308
cution is then launched by restarting the application on the new set309
of resources, which then read the checkpointed data and continue the310
execution.311

4.1.1. Implementation312

We implemented a user-level checkpointing library called SRS (Stop313
Restart Software)(20) to provide application migration support. Via calls314
to SRS, the application can checkpoint data, be stopped at a particular315
execution point, be restarted later on a different processor configuration316
and be continued from the previous point of execution. SRS can trans-317
parently handle the redistribution of certain data distributions (e.g., block318
cyclic) between different numbers of processors (i.e., N to M processors).319
The SRS library is implemented atop MPI and is hence limited to MPI-320
based parallel programs. Because checkpointing in SRS is implemented at321
the application rather than the MPI layer, migration is achieved by exiting322
of the application and restarting it on a new system configuration.323

The SRS library uses the Internet Backplane Protocol (IBP)(21) for324
checkpoint data storage. An external component (e.g., the rescheduler)325
interacts with a daemon called Runtime Support System (RSS). RSS326



U
nc

or
re

ct
ed

 P
ro

of

24 Berman et al.

exists for the duration of the application execution and can span mul-327
tiple migrations: Before the application is started, the launcher initiates328
the RSS daemon on the machine where the user invokes the GrADS329
application manager. The actual application, through the SRS, interacts330
with RSS to perform some inifialization, to check if the application needs331
to be checkpointed and stopped, and to store and retrieve checkpointed332
data.333

The contract monitor retrieves the application’s registration through334
the Autopilot(3) infrastructure. The applications are instrumented with sen-335
sors that report the times taken for the different phases of the execution336
to the contract monitor.337

The contract monitor compares the actual execution times with pre-338
dicted ones and calculates the ratio. The tolerance limits of the ratio are339
specified as inputs to the contract monitor. When a given ratio is greater340
than the upper tolerance limit, the contract monitor calculates the average of341
the computed ratios. If the average is greater than the upper tolerance limit,342
it contacts the rescheduler, requesting that the application be migrated. If343
the rescheduler chooses not to migrate the application, the contract monitor344
adjusts its tolerance limits to new values. Similarly, when a given ratio is less345
than the lower tolerance limit, the contract monitor calculates the average346
of the ratios and lowers the tolerance limits, if necessary.347

The rescheduler component evaluates the performance benefits that348
might accrue by migrating an application and initiates the migration.349
The rescheduler daemon operates in two modes: migration on request and350
opportunistic migration. When the contract monitor detects unacceptable351
performance loss for an application, it contacts the rescheduler to request352
application migration. This is called migration on request. Additionally,353
the rescheduler periodically checks for a GrADS application that has354
recently completed. If it finds one, the rescheduler determines if another355
application can obtain performance benefits if it is migrated to the newly356
freed resources. This is called opportunistic rescheduling. In both cases,357
the rescheduler contacts the Network Weather Service (NWS) for updated358
Grid resource information. The rescheduler uses the COP’s performance359
model to predict remaining execution time on the new resources, remain-360
ing execution time on the current resources, and the overhead for migra-361
tion and determines if migration is desirable.362

4.1.2. Evaluation363

We have evaluated stop/restart rescheduling based on application364
migration for a ScaLAPACK(22) QR factorization application. The365
application was instrumented with calls to the SRS library that366



U
nc

or
re

ct
ed

 P
ro

of

New Grid Scheduling and Rescheduling Methods in the GrADS Project 25

checkpointed application data including the matrix A and the right-hand367
side vector B.368

In the experiments, 4 UTK machines and 8 UIUC machines were369
used. The UTK cluster consists of 933 MHz dual-processor Pentium III370
machines running Linux and connected to each other by 100 Mb switched371
Ethernet. The UIUC cluster consists of 450 MHz single-processor Pentium372
II machines running Linux and connected to each other by 1.28 Gbit/sec-373
ond full-duplex Myrinet. The two clusters are connected via the Internet.374

A given matrix size for the QR factorization problem was input to the375
application manager. Initially, the scheduler used the more powerful UTK376
cluster. However, five minutes after the start of the application, an artifi-377
cial load was introduced on a UTK node, which could make it more effi-378
cient to execute the application the UIUC cluster.379

The contract monitor requested the rescheduler to migrate the appli-380
cation due to the loss in predicted performance caused by the artificial381
load. The rescheduler evaluated the potential performance benefits due to382
migration and either migrated the application or allowed the application383
to continue on the original machines.384

The rescheduler was operated in two modes — default and forced.385
In normal operation, the rescheduler works under default mode, while the386
forced mode allows the rescheduler to require the application to either387
migrate or continue on the same set of resources. Thus, if the default388
mode is to migrate the application, the forced mode will continue the389
application on the same set of resources and vice versa. For the experi-390
ments, results were obtained for both modes, allowing comparison of the391
scenarios and verification that the rescheduler made the right decision.392

Figure 3 was obtained by varying the size of the matrices (i.e., the393
problem size) on the x-axis. The y-axis represents the execution time in394
seconds of the entire problem including the Grid overhead. For each prob-395
lem size, the left bar represents the running time when the application was396
not migrated and the right bar represents the time when the application397
was migrated.398

Several observations can be made from Fig. 3. First, the time for399
reading checkpoints dominated the rescheduling cost, as it involves mov-400
ing data across the Internet and redistributing data to more processors. On401
the other hand, the time for writing checkpoints is insignificant since the402
checkpoints are written to IBP storage on local disks.403

In addition, the rescheduling benefits are greater for large problem404
sizes because the remaining lifetime of the application is larger. For matrix405
sizes of 7000 and below, the migration cost overshadows the performance406
benefit due to rescheduling, while for larger sizes the opposite is true. Our407
rescheduler actually kept the computation on the original processors for408



U
nc

or
re

ct
ed

 P
ro

of

26 Berman et al.

Fig. 3. Problem size and migration.

matrix sizes up to 8000. So, except for matrix size 8000, the rescheduler409
made the correct decision.410

For matrix size 8000, the rescheduler assumed an experimen-411
tally-determined worst-case rescheduling cost of 900 s while the actual412
rescheduling cost was about 420 s. Thus, the rescheduler evaluated the413
performance benefit to be negligible. Hence, in some cases, the pessimistic414
approach of assuming a worst-case rescheduling cost will lead to underesti-415
mating the performance benefits due to rescheduling.416

In another paper,(23) we examine the effects of other parameters (e.g.,417
the load and the time after the start of the application when the load was418
introduced) and the use of opportunistic rescheduling.419

4.2. Rescheduling by Processor Swapping420

Although very flexible, the natural stop, migrate and restart approach421
to rescheduling can be expensive: each migration event can involve large422



U
nc

or
re

ct
ed

 P
ro

of

New Grid Scheduling and Rescheduling Methods in the GrADS Project 27

data transfers. Moreover, restarting the application can incur expensive423
startup costs, and significant application modifications may be required for424
specialized restart code. Our process swapping approach, which was ini-425
tially described in,(24) provides an alternative that is lightweight and easy426
to use, but less flexible than our migration approach.

427

4.2.1. Basic Approach428

To enable swapping, the MPI application is launched with more429
machines than will actually be used for the computation; some of these430
machines become part of the computation (the active set) while some do431
nothing initially (the inactive set). The user’s application sees only the432
active processes in the main communicator (MPI−Comm−World); com-433
munication calls are hijacked, and user communication calls to the active434
set are converted to communication calls to a subset of the full process435
set.436

During execution, the contract monitor periodically checks the perfor-437
mance of the machines and swaps slower machines in the active set with438
faster machines in the inactive set. This approach requires little applica-439
tion modification (as described in(24)) and provides an inexpensive fix for440
many performance problems. On the other hand, the approach is less flex-441
ible than migration—the processor pool is limited to the original set of442
machines, and the data allocation can not be modified.443

MPI Swapping was implemented in the GrADS rescheduling archi-444
tecture in which performance contract violations trigger rescheduling. The445
swapping rescheduler gathers information from sensors, analyzes perfor-446
mance information and determines whether and where to swap processes.447
We have designed and evaluated several policies(6) and we have experi-448
mentally evaluated our process swapping implementation using an N-body449
solver.(6,24)

450

4.2.2. Evaluation451

This section describes how we used the MicroGrid to evaluate the452
GrADS rescheduling implementation.453

The MicroGrid Understanding the dynamic behavior of rescheduling454
approaches for Grids requires experiments under a wide range of resource455
network configurations and dynamic conditions. Historically, this has been456
difficult, and simplistic experiments with either a few resource config-457
urations or simple models of applications have been used. We use a458
general tool, the MicroGrid, which supports systematic, repeatable, scalable,459



U
nc

or
re

ct
ed

 P
ro

of

28 Berman et al.

and observable study of dynamic Grid behavior, to study the behavior460
of the process swapping rescheduling system on a range of network461
topologies. We show data from a run of an N-body simulation, under462
the N–N rescheduling system, running on the MicroGrid emulation of a463
distributed Grid resource infrastructure.464

The MicroGrid allows complete Grid applications to execute on a465
set of virtual Grid resources. It exploits scalable parallel machines as466
compute platforms for the study of applications, network, compute, and467
storage resources with high fidelity. For more information on the Micro-468
Grid see.(5,25,26)469

Experiments with process-swapping rescheduling The first step in using470
the MicroGrid is to define the virtual resource and network infrastruc-471
ture to be emulated. For our demonstration, we created a virtual Grid472
which is a subset of the GrADS testbed, consisting of machines at UCSD,473
UIUC, and UTK. The virtual Grid includes two clusters at UTK and474
UIUC and a single compute node at UCSD. The UTK cluster includes475
three 550 MHz Pentium II nodes. The UIUC cluster consists of three476
450 MHz Pentium II machines. Both clusters are internally connected by477
Gigabit Ethernet. The single UCSD machine is a 1.7 GHz Athlon node.478
The latency between UCSD and the other two sites is 30 ms and between479
UTK and UIUC the latency is 11 ms. These configurations are described480
for MicroGrid in standard Domain Modeling Language (DML) and a481
simple resource description for the processor nodes.482

The MicroGrid uses a Linux cluster at UCSD to implement its483
Grid emulation. We allocated two 2.4 GHz dual-processor Xeon machines484
for network simulation, and seven 450 MHz dual-processor Pentium II485
machines to model the compute nodes in the above virtual Grid.486

To perform the process swapping rescheduling experiment on the vir-487
tual Grid, we first launched the MicroGrid daemons (instantiating the vir-488
tual Grid). From this point on, all processes launched on UCSD, UTK,489
or UIUC machines ran on the virtual Grid nodes. Second, we launched490
the contract monitor infrastructure (the Autopilot manager and contract491
monitor processes) and rescheduler process on the UCSD node. Third, we492
launched the N-body simulation application to the UTK and UIUC clus-493
ters which then connected to the contract monitor and rescheduler. All494
three of the initial active application processes started on the UTK nodes.495
At (virtual) time 80 s, we added two competitive processes to consume496
CPU time on one UTK machine. The rescheduling infrastructure detected497
poor performance and migrated all three working application processes to498
the UIUC cluster by time 150 s. Figure 4 shows the resulting application499
progress, first slowed by the competitive load, then increased by the migra-500
tion to free resources.501



U
nc

or
re

ct
ed

 P
ro

of

New Grid Scheduling and Rescheduling Methods in the GrADS Project 29

Fig. 4. Emulated application progress during N-body demonstration run.

5. FUTURE DIRECTIONS: VIRTUAL GRIDS502

GrADS provided a foundation for an evolving compilation and exe-503
cution infrastructure, GrAD-Soft, which we and others have used to con-504
duct a range of application experiments(27–31) such as those described in505
this paper. These application experiments have not only validated the basic506
GrADS approach, but have also informed our focus on the most critical507
remaining challeges. These efforts are the focus of our new Virtual Grid508
Application Development Software (VGrADS) project.509

One of the key lessons of the GrADS project is that the complexity of510
grid resource environments induces complexity in both application devel-511
opment and execution. First, execution on a shared grid of heterogeneous512
resources such as the TeraGrid forces an application developer to explic-513
itly consider resource heterogeneity, dynamically fluctuating loads, and the514
interaction between local users and resource policies. There is little ques-515
tion that this complicates grid application programs, increasing program-516
ming difficulty and discouraging grid applications. Second, a rigid view517
by applications that prescribe a “perfect” set of resources, complicates518
resource management requiring search of a great expanse of resources519
and rapid, detailed matching of applications to resources. This too is a520
major technological challenge. Finally, it is our observation from work-521
ing with many leading grid application teams that when faced with com-522
plex application performance structure and complex resource environments523
compounded with poor predictive information, expert programmers are524
reduced to use of ad hoc heuristics (albeit sophisticated ones) that require525
much tuning and debugging to achieve acceptable resource utilization and526
application performance.527



U
nc

or
re

ct
ed

 P
ro

of

30 Berman et al.

Building on the knowledge and infrastructure of the GrADS project,528
our new approach adopts the concept of a Virtual Grid (VGrid) as a fun-529
damental element of the software architecture which supports a separation530
of concerns for VGrADS.531

Vgrids cleanly separate high-level programming tools, applications,532
and services from the complexity of dynamic grid scheduling and resource533
management. This approach is analogous to one that has proven effective534
in sequential and parallel computing contexts, where optimizations tar-535
get abstract uniprocessors and multiprocessors rather than the physi-536
cal resources themselves. The same concept will form the basis of our537
approach to simplifying the task of Grid application development.538

Virtual grids support simpler high-level program preparation tools by539
providing simplified resource management and simple monitored perfor-540
mance guarantees. This supports the development and use of more power-541
ful programming abstractions. We believe that virtual grids will enable the542
execution system to quickly and scalably identifying appropriate resources543
for applications, simplifying both application and system-level resource544
management. Finally, the virtual grid approach simplifies performance545
monitoring and resource adaptation by making explicit (and application546
neutral) the performance expectations and guarantees. In short, virtual547
grids provide a cleaner separation of responsibilities across the program548
preparation, execution system, and monitoring and adaptation systems,549
allowing each to be simplified and as a result more effective.550

VGrADS research focuses on two major areas: execution environ-551
ments and programming tools. Execution environment research explores the552
synthesis, coordination, and measurement of grid resources. The goals of553
this work are to explore (1) aggregation and virtualization of resource and554
Grid service aggregates; (2) intelligent, rapid resource selection and man-555
agement in complex, heterogeneous environments; (3) performance mea-556
surement and tuning to achieve high individual application performance;557
and (4) fault-resilience through replication and intermediate, program state558
management. The resulting system will enable the nimble adaptation of559
applications to changing Grid conditions.560

Programming tools research explores the mapping of two distinct,561
high-level programming models to VGrids. The abstract parallel machine562
model treats a computation as a collection of parallel tasks without563
concern for mapping that computation to the actual hardware. The564
abstract component machine model, on the other hand, represents a565
computation as a (possibly dynamic) graph of component invocations566
with specific data dependencies. In this model, applications and services567
might be high-level scripts that invoke operations from a component568
integration frame-work. The VGrADS execution system, working on569



U
nc

or
re

ct
ed

 P
ro

of

New Grid Scheduling and Rescheduling Methods in the GrADS Project 31

behalf of the application, will use VGrids to instantiate both of these570
programming models.571

ACKNOWLEDGMENTS572

The research reported here was supported under National Science573
Foundation awards 9975020, 0103759, and 0331645.574

REFERENCES575

1. I. Foster and C. Kesselman (eds.), The Grid: Blueprint for a New Computing Infra-576
structure, 2nd Ed., Morgan Kaufmann (2003).577

2. K. Kennedy, M. Mazina, J. Mellor-Crummey, K. Cooper, L. Torczon, F. Berman,578
A. Chien, H. Dail, O. Sievert, D. Angulo, I. Foster, D. Gannon, S. L. Johnsson,579
C. Kesselman, R. Aydt, D. Reed, J. Dongarra, S. Vadhiyar, and R. Wolski, Towards580
a Framework for Preparing and Executing Adaptive Grid Programs, Proceedings of581
NSF Next Generation Systems Program Workshop (International Parallel and Distrib-582
uted Processing Symposium), Fort Lauderdale, Florida (April 2002).583

3. R.L. Ribler, H. Simitci, and D.A. Reed, The Autopilot Performance-directed Adaptive584
Control System, Future Generation Computer Systems, 18(1):175–187 (September 2001).585

4. F. Vraalsen, R.A. Aydt, C.L. Mendes, and D.A. Reed, Performance Contracts: Pre-586
dicting and Monitoring Grid Application Behavior, Lecture Notes in Computer Science,587
Vol. 2242, pp. 154–165, Springer Verlag (November 2001).588

5. H. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura, and A. Chien,589
The MicroGrid: A Scientific Tool for Modeling Computational Grids, Proceedings of590
SC2000 (November 2000).591

6. O. Sievert and H. Casanova, Policies for Swapping MPI Processes, Proceedings of592
HPDC-12, the Symposium on High Performance and Distributed Computing (June 2003).593

7. B. Barish and R. Weiss, Ligo and detection of gravitational waves, Physics Today,594
52(10) (1999).595

8. S. Hastings, T. Kurc, S. Langella, U. Catalyurek, T. Pan, and J. Saltz, Image Process-596
ing on the Grid: A Toolkit or Building Grid-enabled Image Processing Applications,597
3rd International Symposium on Cluster Computing and the Grid (2003).598

9. K. Taura and A. Chien, A Heuristic Algorithm for Mapping Communicating Tasks599
on Heterogeneous Resources, Heterogeneous Computing Workshop (May 2000).600

10. S. Vadhiyar and J. Dongarra, A Metascheduler for the Grid, Proceedings of the High601
Performance Distributed Computing Conference (July 2002).602

11. R. Wolski, J. Plank, J. Brevik, and T. Bryan, G-commerce: Market Formulations Con-603
trolling Resource Allocation on the Computational Grid, Proceedings of 2001 Interna-604
tional Parallel and Distributed Processing Symposium (1PDPS) (March 2001).605

12. Condor Team, Condor Version 6.4.7 Manual, //www.cs.wisc.edu/condor/manual/v6.4/.606
13. S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke,607

A Directory Service for Configuring High-Performance Distributed Computations, Pro-608
ceedings of the 6th IEEE Symposium on High-Performance Distributed Computing, pp.609
365–375 (August 1997), URL papers/fitzgerald–hpdc97-mds.pdf.610



U
nc

or
re

ct
ed

 P
ro

of

32 Berman et al.

14. R. Wolski, N.T. Spring, and J. Hayes, The network weather service: a distributed611
resource performance forecasting service for metacomputing, Future Generation Com-612
puter Systems, 15(5–6):757–768 (1999), URL citeseer.nj.nec.com/wolski98network.html.613

15. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory614
of Np-Completeness, MIT Press (1979).615

16. H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman, Heuristics for Schedul-616
ing Parameter Sweep applications in Grid environments, 9th Heterogeneous Computing617
workshop (HCW’2000) (2000).618

17. Tracy D. Braun et al. A Comparision of eleven Static Heuristics for Maping a Class619
of Independent Tasks onto Heterogeneous Distributed Computing Systems, Journal of620
Parallel and Distributed Computing, 61:810–837 (2001).621

18. G. Marin, Semi-Automatic Synthesis of Parameterized Performance Models for Scientific622
Programs, Master’s thesis, Department of Computer Science, Rice University (April623
2003).624

19. S. Ludtke, P. Baldwin, and W. Chiu, EMAN: Semiautomated Software for High-625
Resolution Single-Particle Reconstructions, J. Struct. Biol., 128:82–97 (1999), URL626
http: //ncmi.bcm.tmc.edu/homes/stevel/EMAN/doc.627

20. S. Vadhiyar and J. Dongarra, SRS A Framework for Developing Malleable and628
Migratable Parallel Applications for Distributed Systems, Parallel Processing Letters,629
13(2):291–312 (June 2003), iSSN 0129-6264.630

21. J.S. Plank, M. Beck, W. Elwasif, T. Moore, M. Swany, and R. Wolski, The Internet631
Backplane Protocol: Storage in the Network, NetStore99: The Network Storage Sym-632
posium (1999).633

22. L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,634
S. Hammerling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R.C. Whaley, ScaL-635
APACK User’s Guide (1997).636

23. S. Vadhiyar and J. Dongarra, A Performance Oriented Migration Framework for the637
Grid, IEEE Computing Clusters and the Grid (CCGrid, http://www.ccgrid.org) (May638
12–15 2003).639

24. O. Sievert and H. Casanova, A Simple MPI Process Swapping Architecture for Iter-640
ative Applications, The International Journal of High Performance Computing Applica-641
tions (2004), to appear.642

25. X. Liu and A. Chien, Traffic-based Load Balance for Scalable Network Emulation,643
Proceedings of SC2003 (November 2003).644

26. H. Xia, H. Dail, H. Casanova, F. Berman, and A. Chien, Evaluating the GrADS645
Scheduler in Diverse Grid Environments Using the MicroGrid (May 2003), submitted646
for publication.647

27. A. Petitet, S. Blackford, J. Dongarra, B. Ellis, G. Fagg, K. Roche, and S. Vadhiyar,648
Numerical Libraries and the Grid, Proceedings of SC’01 (November 2001).649

28. M. Ripeanu, A. Iamnitchi, and I. Foster, Cactus Application: Performance Predictions650
in a Grid Environment, Proceedings of European Conference on Parallel Computing651
(EuroPar)2001 (August 2001).652

29. W. Chrabakh and R. Wolski, GrADSAT: A Parallel SAT Solver for the Grid, Techni-653
cal Report CS-2003-05, University of California, Santa Barbara (2003), available from654
http://www.cs.ucsb.edu/research/trcs/index.shtml.655

30. H. Dail, A Modular Framework for Adaptive Scheduling in Grid Application Develop-656
ment Environments, Master’s thesis, University of California, San Diego, Department of657
Computer Science and Engineering (Mardh 2002), available as UCSD Technical Report658
CS2002-0698.659



U
nc

or
re

ct
ed

 P
ro

of

New Grid Scheduling and Rescheduling Methods in the GrADS Project 33

31. A. Mandal, Mapping HPF onto the Grid, Technical report TR03-417, Department of660
Computer Science, Rice University, Houston (November 2002), URL http://www.cs.661
rice. edu/∼anirban/MSthesis.ps.gz.662


