
[Potentially] Your first parallel application
• Compute the smallest element in an array as fast as

possible

small = array[0];
for(i = 0; i < N; i++)
 if(array[i] < small))
 small = array[i]

Advanced OpenMP Tutorial – Performance: Vectorization
Michael Klemm

3

Evolution of Hardware (Intel)

Images not intended to reflect actual die sizes

64-bit Intel®
Xeon®

processor

Intel® Xeon®
processor

5100 series

Intel® Xeon®
processor

5500 series

Intel® Xeon®
processor

5600 series

Intel® Xeon®
processor E5-
2600v2 series

Intel®
Xeon Phi™ Co-

processor
7120P

Frequency 3.6 GHz 3.0 GHz 3.2 GHz 3.3 GHz 2.7 GHz 1.238 MHz

Core(s) 1 2 4 6 12 61

Thread(s) 2 2 8 12 24 244

SIMD width 128
(2 clock)

128
(1 clock)

128
(1 clock)

128
(1 clock)

256
(1 clock)

512
(1 clock)

•  Is this the fastest way to compute the min?

INTRODUCTION TO
OPENMP
George Bosilca
bosilca@icl.utk.edu

What is OpenMP: 1997-2013

Advanced OpenMP Tutorial – An Overview of OpenMP
Ruud van der Pas

5

0

L

1

L

P

L

Shared Memory

What is OpenMP: 2013-

Advanced OpenMP Tutorial – An Overview of OpenMP
Ruud van der Pas

6

Memory

Memory
Memory

Memory

Memory

Memory
Memory

Memory

Memory

Memory
Memory

Memory

http://www.openmp.org
http://www.iwomp.org
http://www.compunity.org

Advanced OpenMP Tutorial – An Overview of OpenMP
Ruud van der Pas

7

http://www.openmp.org
http://www.iwomp.org

http://www.compunity.org

What is OpenMP?
• De-facto standard Application Programming Interface

(API) to write shared memory parallel applications in C, C
++, and Fortran

• OpenMP is widely supported by the industry, as well as
the academic community

• Consists of Compiler Directives, Runtime routines and
Environment variables

• Specification maintained by the OpenMP Architecture
Review Board (http://www.openmp.org)

• Current version: 4.0 (released July 2013)
•  4.1 Draft Specs Open for Public Comment

When to consider OpenMP?
•  Theoretically: never it should be done automatically by the

compiler
• Practically: in all the other cases

When to consider OpenMP?
•  Theoretically: never it should be done automatically by the

compiler
• Practically: in all the other cases

When to consider OpenMP
• Using an automatically parallelizing compiler

•  The compiler can not find the parallelism
•  The data dependence analysis is not able to determine whether it is

safe to parallelize
•  The granularity is not high enough, but you know better

•  Compiler lacks the information to parallelize at a higher level

• Not using an automatically parallelizing compiler
•  No other choice than to parallelize yourself
•  Compilers can still help (e.g. auto-scoping, warnings, etc)

Advantages of OpenMP
• De-facto and mature standard
• Good performance and scalability

•  If you do it right
• An OpenMP program is portable

•  Supported by a large number of compilers
• Requires little programming effort

•  But,
• Allows the program to be parallelized incrementally

•  But,

• OpenMP is ideally suited for multicore architectures
•  Memory and threading model map naturally
•  Lightweight

Components of OpenMP

Directives

• Worksharing
•  Tasking
• Affinity
• Accelerators
• Cancellation
• Synchronization

Runtime functions

•  Thread
Management

• Work
Scheduling

•  Tasking
• Affinity
• Accelerators
• Cancellation
•  Locking

Environment
variables

 •  Thread Settings
•  Thread Controls
• Work

Scheduling
•  Affinity
• Accelerators
• Cancellation
• Operational

The OpenMP Memory Model

Advanced OpenMP Tutorial – An Overview of OpenMP
Ruud van der Pas

18

The OpenMP Memory Model
� All threads have access

to the same, globally
shared memory

� Data in private memory
is only accessible by the
thread owning this
memory

� No other thread sees
the change(s) in private
memory

� Data transfer is through
shared memory and is
100% transparent to the
application

T

private
memory

T
private

memory

T T
private

memory

private
memory

T
private

memory

Shared
Memory

•  All threads have access to the
same, globally shared memory

•  Data in private memory is only
accessible by the thread
owning this memory

•  No other thread sees the
change(s) in private memory

•  Data transfer is through
shared memory and is 100%
transparent to the application

•  Agnostic to the hardware
architecture

•  Agnostic to memory placement

Keep in mind !
• Need to get this right

•  Part of the learning curve

• Private data is undefined on entry and exit
•  Can use firstprivate and lastprivate to address this

• Each thread has its own temporary view on the data
•  Applicable to shared data only
•  Means different threads may temporarily not see the same value

for the same variable ...

• What ?

The Flush Directive

•  If shared variable X is kept within a register, the
modification may not be made visible to the other
thread(s)

.

.
X=0

.

.

.

.
X=1

.

.

while (X == 0)
{
 “wait”
}

The Flush Directive
void wait_read(int i) {
 #pragma omp flush
 while (execution_state[i] != READ_FINISHED)
 {
 system("sleep 1");
 #pragma omp flush
 }
} /*-- End of wait_read --*/

• Example from “Using OpenMP”
•  execution_state[i] is modified outside the scope of the

block and potentially on another thread
•  Flush ensure that all changes become locally visible

About the Flush
•  Implicitly implied on many OpenMP constructs

•  A good thing
•  This is your safety net

• Don’t abuse it
•  For performance reasons a careful usage is more than

recommended

• Strong recommendation: never use the flush directive with
a list
•  Could give very subtle interactions with compilers
•  Just don’t do it !

OpenMP Execution Model
•  Fork and join model

•  A master thread
supported by worker
threads during
#pragma annotated
code blocks

Parallel
region

Worker
threads

Master
thread

Synchronization

Parallel
region

Worker
threads

Master
thread

Synchronization

The OpenMP Barrier
• Several constructs have an implied barrier

•  This is another safety net (has implied flush by the way)

•  In some cases, the implied barrier can be left out through
the nowait clause

•  This can help fine tuning the application
•  But you’d better know what you’re doing

•  The explicit barrier comes in quite handy then

#pragma omp barrier !$omp barrier

The Nowait Clause
•  To minimize synchronization, some directives support the

optional nowait clause
•  If present, threads do not synchronize/wait at the end of that

particular construct

•  In C, it is one of the clauses on the pragma
•  In Fortran, it is appended at the closing part of the

construct

#pragma omp for nowait
{
 .
}

!$omp do
 .
 .
!$omp end do nowait

Defining Parallelism in OpenMP
• A parallel region is a block of code executed by all threads

in the team
•  Must be encountered by all threads (BEWARE !)

#pragma omp parallel [clause[[,] clause] ...]
{
 “code executed in parallel by each thread”
} // End of parall section (note: implied barrier)

!$omp parallel [clause[[,] clause] ...]
 "this code is executed in parallel"
!$omp end parallel (note: implied barrier)

The Worksharing Constructs

•  The work is distributed over the threads
•  Must be enclosed in a parallel region
•  Must be encountered by all threads in the team, or none at all
•  No implied barrier on entry; implied barrier on exit (unless the nowait

clause has been specified)
•  A work-sharing construct does not launch any new threads

#pragma omp for
{
 …
}

!$OMP DO
 ….
!$OMP END DO

#pragma omp sections
{
 …
}

!$OMP SECTIONS
 ….
!$OMP END SECTIONS

#pragma omp single
{
 …
}

!$OMP SINGLE
 ….
!$OMP END SINGLE

The Fortran Workshare Construct
•  Fortran have special constructs to work with array

sections
•  Translate into a specialized Fortran construct

!$OMP WORKSHARE
 .
!$OMP END WORKSHARE [nowait]

!$OMP WORKSHARE
 A(1:M) = A(1:M) + B(1:M)
!$OMP END WORKSHARE NOWAIT

Example:

Parallel Sections
•  Individual section blocks

are executed in parallel
•  Independently
•  Workers are equally divided

among sections

#pragma omp sections [clauses]
{
 #pragma omp section
 { …. }
 #pragma omp section
 { …. }
 ….
} // (note: implied barrier)

!$omp sections [clauses]
 !$ omp section
 {....}
 !$ omp section
 {....}

!$omp end sections [nowait]

Overlap I/O And Processing
#pragma omp parallel sections {
 #pragma omp section {
 for (int i=0; i<N; i++) {
 (void) read_input(i);
 (void) signal_read(i);
 }
 }
 #pragma omp section {
 for (int i=0; i<N; i++) {
 (void) wait_read(i);
 (void) process_data(i);
 (void) signal_processed(i);
 }
 }
 #pragma omp section {
 for (int i=0; i<N; i++) {
 (void) wait_processed(i);
 (void) write_output(i);
 }
 }
} /*-- End of parallel sections --*/

Input
threads

Processing
threads

Output
threads

Time

0 1 2 3

0 1 2 3

0 1 2 3

The Single Directive
• Only one thread in the team executes the code enclosed

#pragma omp single [private][firstprivate] \
 [copyprivate][nowait]
{
 <code-block>
}

•  No guarantee on which
thread will execute the <code-
block>

•  By default an implicit barrier
between all members of the
team is implied
•  Nowait can be used to remove

this constraint

#pragma omp parallel
 {
 Work1();
 #pragma omp single
 {
 Work2();
 }
 Work3();
 }

•  If we have T threads:
•  Work1 will be executed T times
•  Work2 will be executed 1 time
•  Work3 will be executed T times

The master Directive
• Similar to the single directive

•  But only the master thread executes the
<code-block>

• All others are free to go as needed
•  There is implicit barrier on entry or exit

#pragma omp master
{ < code-block> }

!$omp master
 < code-block>
!$omp end master

#pragma omp parallel
 {
 Work1();
 #pragma omp master
 {
 Work2();
 }
 Work3();
 }

•  If we have T threads:
•  Work1 will be executed T times
•  Work2 will be executed 1 time by the

master thread while the others will
continue on Work3

•  Work3 will be executed T times

Additional Directives - Misc

#pragma omp flush [(list)]

!$omp flush [(list)]
Force updates to the variables in the list
Don’t use the list

#pragma omp ordered
{ < code-block> }

!$omp ordered
 < code-block>
!$omp end ordered

When nothing else works
 (aka. debugging purposes)

Additional Directives - Updates
#pragma omp critical [(name)]
{ < code-block> }

!$omp critical [(name)]
 < code-block>
!$omp end critical [(name)]

•  Generic protection of the <code-block>
allowing a single thread at a time in the
<code-block>

•  The name is used to ensure uniqueness
between several critical sections

#pragma omp atomic [clause]

!$omp atomic [clause]

•  Fine grain protection of a single update
•  Uses atomic operations
•  Clauses on the atomic: read, write,

update, capture, seq_cst

"...the results of any execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each individual processor appear
in this sequence in the order specified by its program.” – Leslie Lamport

Loop nesting

•  If the parallel directive is in a section where a team
already exists, a new team will be created for each thread
•  Each thread will be alone in it’s second team
•  Thus, the internal parallel loop is executed sequentially in the

context of a single thread.

#pragma omp parallel for
 for(int y=0; y<5; ++y)
 {
 #pragma omp parallel for
 for(int x=0; x<6; ++x)
 {
 counter(x,y);
 }
 }

The collapse clause
•  increase the total number of iterations that will be

partitioned across the available number of OMP threads
by reducing the granularity of work to be done by each
thread

#pragma omp parallel for collapse(2)
 for(int y=0; y<5; ++y)
 {
 #pragma omp parallel for
 for(int x=0; x<6; ++x)
 {
 counter(x,y);
 }
 }

#pragma omp parallel for
 for(int x, y, t = 0; t < (5*6); ++t)
 {
 y = t / 6;
 x = t%6;
 counter(x,y);
}

Clauses
•  private: each thread in the

team will have its own copy
•  shared: all threads share

the same variable (beware
read/write conflicts)

•  firstprivate: the variable is
private but it is initialized
from the variable with the
same name from the
context above

•  lastprivate: the last thread
will copy its private variable
into the global one

#pragma omp parallel [
 if (scalar_expression)
 private (list)
 shared (list)
 default (shared | none)
 firstprivate (list)
 reduction (operator: list)
 copyin (list)
 num_threads (#)
{
 “code executed in parallel by each
thread”
} // End of parall section (note: implied
barrier)

Reduction clause
•  Operation that combines multiple elements to form a single result
•  A variable that accumulates the result is called a reduction variable
•  In parallel loops reduction operators and variables must be declared
float a, b;
a= 0.;
b= 1.;
#pragma omp parallel for reduction(+:a) reduction(*:b)
for (i=0; i<n; i++){
 a = a+ a[i];
 b = b* a[i];
}
•  Each thread has a private a and b, initialized to the operator’s identity
•  After the loop execution, the master thread collects the private values

of each thread and finishes the (global) reduction

A word about scheduling
•  schedule(static)

•  Each thread receives one set of contiguous iterations
•  schedule(static, C)

•  Iterations are divided round-robin fashion in chunks of size C
•  schedule(dynamic, C)

•  Iterations handed out in chunks of size C as threads become
available

•  schedule(guided, C)
•  Each of the iterations are handed out in pieces of exponentially

decreasing size, with C minimum number of iterations to dispatch
each time

•  schedule (runtime)
•  Schedule and chunk size taken from the OMP_SCHEDULE

environment variable

OpenMP environment variables

Environment variables

•  The names have to be in uppercase; the values are case insensitive
•  Be careful when relying on defaults (because they are compiler

dependent)

Advanced OpenMP Tutorial – An Overview of OpenMP
Ruud van der Pas

51

9 The names have to be in uppercase; the values are case insensitive
9 Be careful when relying on defaults (because they are compiler dependent)

OpenMP Environment Variable Category

OMP_DISPLAY_ENV Diagnostics
OMP_NUM_THREADS Thread Management
OMP_THREAD_LIMIT Thread Management
OMP_DYNAMIC {true| false} Thread Management
OMP_NESTED {true| false} Parallelism
OMP_MAX_ACTIVE_LEVELS Parallelism

OMP_STACKIZE “size [b|k|m|g]” Operational

Environment Variables/1

Environment variables

Advanced OpenMP Tutorial – An Overview of OpenMP
Ruud van der Pas

52

Environment Variables/2
OpenMP Environment Variable Category

OMP_PLACES Affinity
OMP_PROC_BIND Affinity
OMP_DEFAULT_DEVICE Accelerators
OMP_CANCELLATION Thread Management
OMP_WAIT_POLICY [active | passive] Thread Management
OMP_SCHEDULE “schedule, [chunk]” Work Distribution

Thread affinity

Advanced OpenMP Tutorial – An Overview of OpenMP
Ruud van der Pas

60

Thread Affinity – Machine Model
hw thread 0

hw thread “m”
core 0

hw thread 0

hw thread “m”

core
“n”

...
..

...
..

...
..

socket 0m
em

or
y

hw thread 0

hw thread “m”
core 0

hw thread 0

hw thread “m”

core
“n”

...
..

...
..

...
..

socket “k”m
em

or
y

Ca
ch

e
Co

he
re

nt
 S

ys
te

m

In
te

rc
on

ne
ct

...
..

Thread affinity
• Define “hardware thread units”, called places

•  Order within a place is irrelevant

• Define a set of places, called a place list
•  Order of the places in the place list matters!

• Examples:
•  OMP_PLACES = “{0,1,2} , {5,6,7}”
•  OMP_PLACES = “{5,6,7} , {0,1,2}”
•  OMP_PLACES = “{5:2:1} , {0:2:1}”

Thread affinity
•  Then define how these units are mapped/bound to the

hardware topology
•  This is usually called “binding”
•  Controlled through OMP_PROC_BIND and/or the proc_bind clause

• Note that the low level thread numbers are system
dependent
•  Luckily, abstraction is supported though !

•  Three abstract names are supported:
•  sockets / cores / threads

• Example:
•  OMP_PLACES=cores
•  Optional: length specifier (e.g. cores(4))

Thread affinity
•  Master – Every thread in the team is assigned the same place

as the master thread
•  Close – Assign threads to places close to the parent thread

•  The threads stay “close”, as defined through the places list
•  Main goal: first use all threads within a core

•  Spread – Use a sparse distribution over the places
•  Spread the threads out, as defined by the places list
•  Main goal: use all cores in the system first

•  [export|setenv] OMP_PROC_BIND=[master | close | spread]
•  proc_bind(master | close | spread)
•  This environment variable and the clause define a policy for

assigning threads to places

