
Symmetric dense matrix tridiagonalization
on a GPU cluster

Ichitaro Yamazaki, Tim Dong, Stan Tomov, Jack Dongarra

Inovative Computing Lab.
University of Tennessee, Knoxville

Accelerators and Hybrid Exascale Systems (AsHES) Workshop
Boston, Massachusetts, 05/20/2013

Symmetric dense tridiag. on a GPU cluster 1/18

Introduction

I Objective: reduces a matrix A into a tridiagonal matrix T ,

where A is dense (aij 6= 0) and symmetric (A = AT), through

QTAQ = T ,

where Q is orthogonal.

I Motivation: often a bottleneck in solving symmetric dense eigenvalue problem:

Av = λv or Av = λBv .

I arise in many scientific and engineering simulations: e.g.,

- electronics calculation, quantum physics, image processing, web analysis, etc.

Symmetric dense tridiag. on a GPU cluster 2/18

MAGMA (Matrix Algebra on GPU and Multicore Architecture)

multi-GPU SYTRD integrated in
> dense and sparse eigensolvers

8GPU results are from R. Solcá of ETH.

> electronic structure calculation
(e.g., Exciting, Elk, Abinit, QuantumEspress).

> optimized GPU kernels
with 1DBC on multiple GPUs.

- multi-GPU dense symmetric solver -

0 1 2 3
0

100

200

300

400

500

600

700

800

Number of GPUs

T
im

e
 (

s
)

DORMTR

DSTEDC

DSYTRD

- multi-GPU dense symmetric generalized solver -

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

Number of GPUs

T
im

e
 (

s
)

ZPOTRF

ZHEGST

ZHEEVD

ZTRSMM

- distributed sparse Lanczos solver -

2 4 8
0

50

100

150

Number of nodes

T
im

e
 (

m
)

Total solution time

LAPACK

MAGMA

Symmetric dense tridiag. on a GPU cluster 3/18

Extension to distributed GPUs

Motivation: solving larger-scale problems

I not easy to develop an out-of-GPU-memory version

I whole trailing submatrix accessed to reduce each column
I problem size limitted by GPU memory

I weak-scaling studies on tens of GPUs or nodes.

Our first step: ScaLAPACK with GPUs

I any number of MPIs/GPUs per node,
but one MPI dispatch GPU kernels.
- larger GPU kernel and smaller communication

I 1DBC and MPI mapped to cores in a
round-robing among nodes.
- our GPU-kernels recycled

I same optimization techniques
(e.g., static schedule, overlapping CPU

with GPU and MPI-comm of vectors). 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2MPI id:

GPU id: 1,0 1,1 1,0 1,1 0,0 1,0 1,1 0,0 1,0

MPI−2

MPI−4

MPI−0
GPU−0,1

GPU−0,0

MPI−1

MPI−3

MPI−5

GPU−1,0

GPU−1,1

Node−0

Node−1

0,0 0,1 0,10,0 0,1 0,1

Symmetric dense tridiag. on a GPU cluster 4/18

“Blocked” tridiagonalization algorithm

step 1: step 2:
panel factorization trailing submatrix update

Panel

q
1,q2,

q
1,q2,

...

...

Q

Q

T

Submatrix

for each column in the panel
- generate qj to reduce the column
- accumurate it into a blocked update Q

- reduce communication by a
block update

Symmetric dense tridiag. on a GPU cluster 5/18

computational kernels in tridiagonalization: total of 4
3
n3 + O(n2) flops

1. panel factorization: tridiagonal reduction of a panel

I SYMV (bandwidth-limited BLAS-2) about 50% of flops

multiply with whole trailing submatrix Â to reduce each column

wj := Âvj → 2n̂2 flops
(n̂2+n̂)/2+n̂ data

≈ 4 flops
data

(per call)

→ total of 2
3
n3 flops

−→ exploit greater memory bandwidth of GPUs

A

2. trailing submatrix update: blocked orthogonal update of trailing submatrix:

I SYR2K (more data-parallel BLAS-3) about 50% of flops
symmetric rank-k update with each panel

A := A− VWT −WVT → 2n̂2k flops
(n̂2+n̂)/2+n̂k data

≈ 4k flops
data

(per call, k = 32, 64)

→ total of 2
3
n3 flops

−→ exploit larger computational throughput of GPUs

Symmetric dense tridiag. on a GPU cluster 6/18

breakdown of reduction time using one GPU

Keeneland: (two 8-core Intel SandyBridge CPUs + three NVIDIA M2090 GPUs)/node

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10
4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Matrix size, n

T
im

e
 /

 T
o

ta
l

dsytrd

dsymv+dsyr2k+dlarfg

dsymv+dsyr2k

dsymv

I reduction time dominated by dsymv and dsyr2k (up to 90%),
especially BLAS-2 dsymv (up to 80%).

Symmetric dense tridiag. on a GPU cluster 7/18

multi-GPU kernel 1: BLAS-3 SYR2K symmetric rank-k updates

a sequence of “small” CUBLAS calls on streams to exploit data parallelism

where A is statically distributed among GPUs in 1DBC

V W

W

V

T

T

syr2k

syr2k

syr2k

syr2k

gemm gemm gemm gemm
gemm gemm gemm gemm

I each GPU updates block columns of its local submatrix
I SYR2K(VI ,WI) on diagonal block, and

GEMM(VT
I ,WI :N) and GEMM(WT

I , VI :N) on off-diagonal

I multiple GPU streams cyclically on block columns

Symmetric dense tridiag. on a GPU cluster 8/18

performance of SYR2K on multiple GPUs (Keeneland: three NVIDIA M2090 GPUs/node).

0 1000 2000 3000 4000 5000 6000 7000
0

200

400

600

800

1000

1200

Matrix size

G
fl
o
p
/s

Double Complex

3 GPUs
2 GPUs

1 GPU
MKL

0 2000 4000 6000 8000 10000
0

200

400

600

800

1000

1200

Matrix size

G
fl
o
p
/s

Double Real

3 GPUs
2 GPUs

1 GPU
MKL

high data-parallelism

I peak double precision performance = 665Gflop/s → 40% of the peak

I 430 and 380 Gflops by zgemm and dgemm → 75% of gemm

I only about 15% of the reduction time is spent here

Symmetric dense tridiag. on a GPU cluster 9/18

multi-GPU kernel 2: BLAS-2 SYMV symmetric matrix-vector multiplication

a specialized CUDA kernel to minimize data traffic for multiply with local matrix
(an extension of our SC’11 paper).

=

thread 1

thread 2

thread 3

thread 4

thread 5

thread 6

thread 7

thread 8

t

h

r

e

a

d

1

t

h

r

e

a

d

2

t

h

r

e

a

d

3

t

h

r

e

a

d

4

t

h

r

e

a

d

5

t

h

r

e

a

d

6

t

h

r

e

a

d

7

t

h

r

e

a

d

8

I each GPU thread processes a block row

I as each block Aij is read, we multiply with Aij and AT
ij

- each thread writes its partial result to its own workspace

- another kernels is launched to sum the partial results

- A is read only once from the GPU memory

Symmetric dense tridiag. on a GPU cluster 10/18

performance of SYMV on multiple GPUs (Keeneland: three NVIDIA M2090 GPUs/node).

0 5000 10000 15000
0

20

40

60

80

100

120

140

160

180

200

Matrix size, n

G
fl
o
p
/s

Double Complex

3 GPUs
2 GPUs

1 GPU
CUBLAS

0 0.5 1 1.5 2 2.5

x 10
4

0

20

40

60

80

100

120

140

160

180

200

Matrix size, n

G
fl
o
p
/s

Double Real

3 GPUs
2 GPUs

1 GPU
CUBLAS

bandwidth-limited operation:

I zhemv performs twice more operations → twice the Gflop/s

I 120GB/sec with ECC on → peaks are 120 and 60 Gflop/s for zhemv and dsymv
→ 65%− 75% of this peak
→ 15%− 20% of gemm

I up to 80% of the reduction time is spent here

Symmetric dense tridiag. on a GPU cluster 11/18

putting them together: multi-GPU tridiagonalization

1 statically distribute A in 1DBC

2 for each panel

2.1 panel factorization

for each column in the panel

2.1.1 update aj with previous v and w on CPUs

2.1.2 compute Householder reflector on CPUs

2.1.3 broadcast reflector to all GPUs

2.1.4 SYMV of local submatrices on GPUs in parallel

2.1.5 copy vector vj back to CPU

2.1.6 compute wj on CPUs

2.2 trailing submatrices update

2.2.1 broadcast V and W to GPUs

2.2.2 SYR2K of local submatrix on GPUs in parallel

for each GPU call, communicate:

I local matrix (n2+n
2×gpus data) from GPU memory

I vector(s) (n or nk data) between CPU and GPU (non-blocking MPI + GPU streams)

Symmetric dense tridiag. on a GPU cluster 12/18

hybrid CPU-GPU computing with asynch. MPI and GPU communication

I SYR2K: hide communication of V or W behind panel factorization
using asynch MPI send and dedicated GPU stream

I SYMV: overlap CPU and GPU computation (and hide CPU-GPU communication)

for multiplying with updated Â (left-look within panel, right-look between panels),

(Â− V̂ ŴT − Ŵ V̂T)vj ,

where Â is n̂ × n̂, while V̂ and Ŵ are n̂ × (j − 1).

- Âvj on GPUs, while (V̂ ŴT + Ŵ V̂T)vj (and updating next column) on CPUs.

- a piece of a trace on 3 GPUs -

Symmetric dense tridiag. on a GPU cluster 13/18

Performance on Keeneland: ScaLAPACK

I Keeneland: two 8-core 2.6GHz Intel Xeon processors (SandyBridge)
and three NVIDIA Tesla M2090 GPUs.

I weak-scaling studies: matrix size = 11, 520× (number of nodes)
1
2 .

1 4 16
0

100

200

300

400

500

600

700

800

900

Number of nodes

T
im

e
 (

s
)

Others

PDSYMV comm

PDSYMV

PDSYR2K

I hybrid-programming performed well

- 1MPI/socket obtained best computation and communication performance

Symmetric dense tridiag. on a GPU cluster 14/18

Performance on Keeneland: ScaLAPACK+1GPU/node

1 4 16
0

100

200

300

400

500

600

700

800

900

Number of nodes

T
im

e
 (

s
)

Others

PDSYMV comm

PDSYMV

PDSYR2K

1 4 16
0

100

200

300

400

500

600

700

800

900

Number of nodes

T
im

e
 (

s
)

Others

PDSYMV comm

PDSYMV

PDSYR2K

1.7 1.7 4.8

2.3 1.5 3.5

2.2 0.8 1.8

I GPU-extension got reasonable speedups

- significant speedups over 1MPI/core or 1MPI/node.

- similar performance as 1MPI/socket.

Symmetric dense tridiag. on a GPU cluster 15/18

Performance on Keeneland: ScaLAPACK+3GPUs/node

1 4 16
0

100

200

300

400

500

600

700

800

900

Number of nodes

T
im

e
 (

s
)

Others

PDSYMV comm

PDSYMV

PDSYR2K

1 4 16
0

100

200

300

400

500

600

700

800

900

Number of nodes

T
im

e
 (

s
)

Others

PDSYMV comm

PDSYMV

PDSYR2K

3.9 3.8 10.8
3.8 2.5 5.9

2.8 1.1 2.3

I GPU-extension got reasonable speedups

I it is difficult to scale to large-scale,

- non-blocking MPI-GPU comm. to reduce waiting time
→ MPI communication starts fo dominate.

- GPU kernel to reduce computation time
→ GPU efficiency goes down on many nodes

↑ both of which may be addressed by 2DBC.

Symmetric dense tridiag. on a GPU cluster 16/18

Performance of SYMV in 2DBC vs. 1DBC

0 0.5 1 1.5 2 2.5 3

x 10
4

0

500

1000

1500

2000

2500

Matrix size

G
fl
o
p
/s

8−by−8 GPU−grid
1−by−64 GPU−grid
4−by−4 GPU−grid
1−by−16 GPU−grid
2−by−2 GPU−grid
1−by−4 GPU−grid

1DBC on 64 GPUs

2DBC on 4 GPUs

1DBC on 16 GPUs

2DBC on 16 GPUs

1DBC on 4 GPUs

2DBC on 64 GPUs

thread 1

thread 2

thread 3

thread 4

thread 5

thread 6

thread 7

thread 8

I local submatrix is closer to square with 2DBC
- GPU-kernel performs better on a square matrix

I it is being integrated into ScaLAPACK.

Symmetric dense tridiag. on a GPU cluster 17/18

Final remarks

I ok speedups on a small number of nodes

I challenge to scale to more nodes
- MPI communication starts to dominate
- GPU kernel does not scale well

0 0.5 1 1.5 2 2.5 3

x 10
4

0

500

1000

1500

2000

2500

Matrix size

G
fl
o

p
/s

8−by−8 GPU−grid
1−by−64 GPU−grid
4−by−4 GPU−grid
1−by−16 GPU−grid
2−by−2 GPU−grid
1−by−4 GPU−grid

1DBC on 64 GPUs

2DBC on 4 GPUs

1DBC on 16 GPUs

2DBC on 16 GPUs

1DBC on 4 GPUs

2DBC on 64 GPUs

Current and future work:

I 2DBC (or any other suggestion?) to obtain higher-performance

- to reduce communication and to improve GPU utilization
- larger-scale studies and distributed Kepler?

I runtime system? two-stage on distributed GPUs?

Symmetric dense tridiag. on a GPU cluster 18/18

