Symmetric dense matrix tridiagonalization

on a GPU cluster

Ichitaro Yamazaki, Tim Dong, Stan Tomov, Jack Dongarra

Inovative Computing Lab.
University of Tennessee, Knoxville

Accelerators and Hybrid Exascale Systems (AsHES) Workshop
Boston, Massachusetts, 05/20/2013

Symmetric dense tridiag. on a GPU cluster 1/18

Introduction

> Objective: reduces a matrix A into a tridiagonal matrix T,

where A is dense (a; # 0) and symmetric (4 = A7), through

QRTAQ =T,

where Q is orthogonal.

» Motivation: often a bottleneck in solving symmetric dense eigenvalue problem:

Av = Av or Av = ABv.

> arise in many scientific and engineering simulations: e.g.,

- electronics calculation, quantum physics, image processing, web analysis, etc.

Symmetric dense tridiag. on a GPU cluster 2/18

- multi-GPU dense symmetric solver -

multi-GPU SYTRD integrated in

. I DORMTR
> dense and sparse eigensolvers 700
8GPU results are from R. Solca of ETH. 600
. . 500
> electronic structure calculation s
2 400
(e.g., Exciting, Elk, Abinit, QuantumEspress). £
300
> optimized GPU kernels 200
with 1DBC on multiple GPUs. 100
0 0 1 2 3
Number of GPUS
- multi-GPU dense symmetric generalized solver - - distributed sparse Lanczos solver -
120) ' otal solution time|
APACK
EZHEEVD MAGMA
100 [EIZTRSMM
80 100
= E
2 60 e
[5

N
3

4OIIIIIIII 50
7 8

Number of GPUs

4
Number of nodes

Symmetric dense tri

iag. on a GPU cluster 3/18

Extension to distributed GPUs

Motivation: solving larger-scale problems

> not easy to develop an out-of-GPU-memory version

> whole trailing submatrix accessed to reduce each column
> problem size limitted by GPU memory

> weak-scaling studies on tens of GPUs or nodes.

Our first step: ScaLAPACK with GPUs

mAOi—GPU*U,l
» any number of MPIs/GPUs per node, e | PV
but one MPI dispatch GPU kernels. Mo

L. Node—0
- larger GPU kernel and smaller communication

GPU-1,0

» 1DBC and MPI mapped to cores in a
round-robing among nodes.

- our GPU-kernels recycled Node-1

» same optimization techniques
(e.g., static schedule, overlapping CPU

with GPU and MPIl-comm of vectors). MPLid: 0 1 23 45 0 12345012
GPUid: 0,0 1,0 0,1 1,1 0,0 1,0 0,1 1,1 00 1,0 0,1 1,1 0,0 1,0 0,1

Symmetric dense tridiag. on a GPU cluster 4/18

“Blocked” tridiagonalization algorithm

step 1: step 2:
panel factorization trailing submatrix update

QT
Q
4—Panel —) 4-Submatrixp
for each column in the panel - reduce communication by a
- generate qg; to reduce the column block update

- accumurate it into a blocked update Q

Symmetric dense tridiag. on a GPU cluster 5/18

computational kernels in tridiagonalization: total of n®+ O(n?) flops

1. panel factorization: tridiagonal reduction of a panel
> SYMV (bandwidth-limited BLAS-2) about 50% of flops

multiply with whole trailing submatrix A to reduce each column

=2
e Ay 25 flops . 4 flops
wj = Ay - (#2+n)/2+n data ~ data (per call)

— total of %n3 flops
— exploit greater memory bandwidth of GPUs

2. trailing submatrix update: blocked orthogonal update of trailing submatrix:

» SYR2K (more data-parallel BLAS-3) about 50% of flops

symmetric rank-k update with each panel

A=A-—wwWT —wT

22k flops . 4k flops _
7)ok data > data (Per call k = 32,64)

— total of %ne‘ flops

— exploit larger computational throughput of GPUs

Symmetric dense tridiag. on a GPU cluster 6/18

breakdown of reduction time using one GPU

Keeneland: (two 8-core Intel SandyBridge CPUs + three NVIDIA M2090 GPUs)/node

11
1
0.9
0.8}
s
207
£ 0.6
E
0.5f
0.4 ——dsytrd f
——dsymv+dsyr2k+dlarfg
0.3f dsymv+dsyr2k Ml
—dsymv
2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Matrix size, n x 10

> reduction time dominated by dsymv and dsyr2k (up to 90%),
especially BLAS-2 dsymv (up to 80%).

Symmetric dense tridiag. on a GPU cluster 7/18

multi-GPU kernel 1: BLAS-3 SYR2K symmetric rank-k updates

a sequence of “small” CUBLAS calls on streams to exploit data parallelism
where A is statically distributed among GPUs in 1DBC

R/ Y Y A B R
VI I T T T ITTITITT
vV W syr2k l
I
XXsyer
A
syr2k
—

syr2k

b} b1

gemm gemm gemm gemm
gemm gemm gemm gemm

» each GPU updates block columns of its local submatrix
> SYR2K(V;, W,) on diagonal block, and

GEMM(V,T, W;.y) and GEMM(W,T, V,.y) on off-diagonal

» multiple GPU streams cyclically on block columns

Symmetric dense tridiag. on a GPU cluster 8/18

performance of SYR2K on multiple GPUs (keeneland: three NVIDIA M2090 GPUS/node).

Double Complex Double Real
1200 1200
—3GPUs —3GPUs
—2GPUs —2GPUs
1000}| —1 GPU //_/-»/V—”W 1000 —1 GPU]
—— MKL / —MKL
4 2
Q Q
2 2
5] 5}
0 / L L L L L L 0 = L L L L L
0 1000 2000 3000 4000 5000 6000 7000 0 2000 4000 6000 8000 10000
Matrix size

Matrix size

high data-parallelism
> peak double precision performance = 665Gflop/s — 40% of the peak

» 430 and 380 Gflops by zgemm and dgemm — 75% of gemm

> only about 15% of the reduction time is spent here

Symmetric dense tridiag. on a GPU cluster 9/18

multi-GPU kernel 2: BLAS-2 SYMV symmetric matrix-vector multiplication

a specialized CUDA kernel to minimize data traffic for multiply with local matrix

(an extension of our SC'11 paper).

tttttttt
hhhhhhhh
rrrrrororr
ceeeceeee
aaaaaaaa
dddddddd
l‘ 2345678

thread 1 —§ 3]

thread 2 —§ A

thread 3 —) ~|

thread 4 » d

thread 5) - I+

thread 6) 1L

thread 7) 1L

thread 8) ~|

» each GPU thread processes a block row
» as each block Aj; is read, we multiply with A;; and Al.}.—

- each thread writes its partial result to its own workspace
- another kernels is launched to sum the partial results

- Ais read only once from the GPU memory

Symmetric dense tridiag. on a GPU cluster 10/18

performance of SYMV on multiple GPUs (keeneland: three NVIDIA M2090 GPUSs/node).

Double Complex Double Real
2001 200 1
1801 180 9
1601 160 9
1400 1401 .
o 1200 @ 120f g
g 5
5 100[5 100 9
801 801 1
60r 601 1
L - v 1—3GPUs L —3GPUs ||
40 O ——2GPUs 40 ——2GPUs
20f —1GPU 20 —1GPU ||
——CUBLAS ——CUBLAS
0 0
0 5000 10000 15000 0 0.5 1 1.5 2 25
Matrix size, n Matrix size, n x10*

bandwidth-limited operation:
» zhemv performs twice more operations — twice the Gflop/s

> 120GB/sec with ECC on — peaks are 120 and 60 Gflop/s for zhemv and dsymv
— 65% — 75% of this peak
— 15% — 20% of gemm

> up to 80% of the reduction time is spent here

Symmetric dense tridiag. on a GPU cluster 11/18

putting them together: multi-GPU tridiagonalization

1 statically distribute A in 1DBC
2 for each panel
2.1 panel factorization
for each column in the panel
2.1.1 update a; with previous v and w on CPUs
2.1.2 compute Householder reflector on CPUs
2.1.3 broadcast reflector to all GPUs
2.1.4 SYMYV of local submatrices on GPUs in parallel
2.15 copy vector v; back to CPU
2.1.6 compute w; on CPUs
2.2 trailing submatrices update
221 broadcast V and W to GPUs
222 SYR2K of local submatrix on GPUs in parallel

for each GPU call, communicate:

n?+n

P local matrix (2><gpus

data) from GPU memory

P vector(s) (n or nk data) between CPU and GPU (non-blocking MPI + GPU streams)

Symmetric dense tridiag. on a GPU cluster 12/18

hybrid CPU-GPU computing with asynch. MPI and GPU communication

» SYR2K: hide communication of V or W behind panel factorization
using asynch MPI send and dedicated GPU stream

> SYMV: overlap CPU and GPU computation (and hide CPU-GPU communication)
for multiplying with updated A (left-look within panel, right-look between panels),

(A-VWT —wVT)y,
where A is A x A, while V and W are A x (U —1).

- /ZVJ on GPUs, while (VWT + WVT)VJ (and updating next column) on CPUs.

B | ‘ H| | H ‘ | H ‘ ‘ | H ‘ ‘ ‘ H H
h -I‘I“l“““Ill‘l“““‘. I‘

§—Update — € Panel > é— Update -

- a piece of a trace on 3 GPUs -

Symmetric dense tridiag. on a GPU cluster 13/18

Performance on Keeneland: ScaLAPACK

> Keeneland: two 8-core 2.6GHz Intel Xeon processors (SandyBridge)
and three NVIDIA Tesla M2090 GPUs.

> weak-scaling studies: matrix size = 11,520 x (number of nodes)%.

900

I Others
800}/ CJPDSYMV comm
I PDSYMV

I PDSYR2K

4
Number of nodes

» hybrid-programming performed well
- 1MPI/socket obtained best computation and communication performance

Symmetric dense tridiag. on a GPU cluster 14/18

Performance on Keeneland: ScaLAPACK+1GPU /node

900 900
Il Others Il Others
800}{| CPDSYMV comm 800{| CJPDSYMV comm
I PDSYMV I PDSYMV
700} EEEPDSYR2K 700/ EB PDSYR2K
600 600
@ 500 2 500
g £
i 400 £ 400 20 08 18

300

200

100

4 4
Number of nodes Number of nodes

» GPU-extension got reasonable speedups
- significant speedups over 1MPI/core or 1IMPI/node.

- similar performance as 1MPI/socket.

Symmetric dense tridiag. on a GPU cluster

Performance on Keeneland: ScaLAPACK+3GPUs/node

900, 90!
I Others Il Others

800H CZZIPDSYMV comm 800 CZZ1PDSYMV comm
I PDSYMV I PDSYMV

700 EBPDSYR2K 700 B PDSYR2K

600 600

© 500 © 500
© P
£ £
i 400 £ 400
200 200 28 14 23
200 200
100 100 38 25 59
39 38 108

4 4
Number of nodes Number of nodes

» GPU-extension got reasonable speedups

» it is difficult to scale to large-scale,
- non-blocking MPI-GPU comm. to reduce waiting time
— MPI communication starts fo dominate.
- GPU kernel to reduce computation time

— GPU efficiency goes down on many nodes
1 both of which may be addressed by 2DBC.

Symmetric dense tridiag. on a GPU cluster 16/18

Performance of SYMV in 2DBC vs. 1DBC

——8-by-8 GPU—grid
25000 4 by 64 GPU—grid]
—— 4-by-4 GPU—grid
1-by-16 GPU-grid| =
20001 —— 2_by-2 GPU_grid 2DBC on 64 GPUs
—— 1-by—4 GPU—-grid
2 1500
s 1DBC on 64 GPUs
5 P
1000 ALV
2DBC on 16 GPUs
500 1DBC-on16:GPUs
2DBC on 4 GPUs
—_ 1DBC on 4 GPUs
o 05 1 2 25 3

> local submatrix is closer to square with 2DBC
- GPU-kernel performs better on a square matrix

1.5
Matrix size

> it is being integrated into ScaLAPACK.

Symmetric dense tri

iag. on a GPU cluster

17/18

thread 1 —

thread 2 —

didld

thread 3 —

thread 4

thread 5

-~

thread 6

-~

thread 7

thread 8

~

. — 8-by-8 GPU-grid
Final remarks 2s0of| —— S-0u-8 GPLare 4
— 4-by-4 GPU~grid
2000 1-by-16 GPU-grid
» ok speedups on a small number of nodes A

/2DBC on 64 GPUs R

1500

Gflopls

1DBC on §4.GPUs.

A

» challenge to scale to more nodes
- MPI communication starts to dominate 1000)
- GPU kernel does not scale well

2DBC on 16 GPUs
1DBC.on16:GPUs

500
Vel 2DBC on 4 GPUs

. — 1DBCon4GPUs,

15
Matrix size x 10"

Current and future work:

» 2DBC (or any other suggestion?) to obtain higher-performance
- to reduce communication and to improve GPU utilization

- larger-scale studies and distributed Kepler?

> runtime system? two-stage on distributed GPUs?

Symmetric dense tridiag. on a GPU cluster 18/18

