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Introduction

> Objective: reduces a matrix A into a tridiagonal matrix T,

where A is dense (a; # 0) and symmetric (4 = A7), through

QRTAQ =T,

where Q is orthogonal.

» Motivation: often a bottleneck in solving symmetric dense eigenvalue problem:

Av = Av or Av = ABv.

> arise in many scientific and engineering simulations: e.g.,

- electronics calculation, quantum physics, image processing, web analysis, etc.
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- multi-GPU dense symmetric solver -

multi-GPU SYTRD integrated in
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Extension to distributed GPUs

Motivation: solving larger-scale problems

> not easy to develop an out-of-GPU-memory version

> whole trailing submatrix accessed to reduce each column
> problem size limitted by GPU memory

> weak-scaling studies on tens of GPUs or nodes.

Our first step: ScaLAPACK with GPUs

mAOi—GPU*U,l
» any number of MPIs/GPUs per node, e | PV
but one MPI dispatch GPU kernels. Mo

L. Node—0
- larger GPU kernel and smaller communication

GPU-1,0

» 1DBC and MPI mapped to cores in a
round-robing among nodes.

- our GPU-kernels recycled Node-1

» same optimization techniques
(e.g., static schedule, overlapping CPU

with GPU and MPIl-comm of vectors). MPLid: 0 1 23 45 0 12345012
GPUid: 0,0 1,0 0,1 1,1 0,0 1,0 0,1 1,1 00 1,0 0,1 1,1 0,0 1,0 0,1
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“Blocked” tridiagonalization algorithm

step 1: step 2:
panel factorization trailing submatrix update

QT
Q
4—Panel —) 4-Submatrixp
for each column in the panel - reduce communication by a
- generate qg; to reduce the column block update

- accumurate it into a blocked update Q
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computational kernels in tridiagonalization: total of n®+ O(n?) flops

1. panel factorization: tridiagonal reduction of a panel
> SYMV (bandwidth-limited BLAS-2) about 50% of flops

multiply with whole trailing submatrix A to reduce each column

=2
e Ay 25 flops . 4 flops
wj = Ay - (#2+n)/2+n data ~ data (per call)

— total of %n3 flops
— exploit greater memory bandwidth of GPUs

2. trailing submatrix update: blocked orthogonal update of trailing submatrix:

» SYR2K (more data-parallel BLAS-3) about 50% of flops

symmetric rank-k update with each panel

A=A-—wwWT —wT

22k flops . 4k flops _
7)ok data > data (Per call k = 32,64)

— total of %ne‘ flops

— exploit larger computational throughput of GPUs
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breakdown of reduction time using one GPU

Keeneland: (two 8-core Intel SandyBridge CPUs + three NVIDIA M2090 GPUs)/node
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> reduction time dominated by dsymv and dsyr2k (up to 90%),
especially BLAS-2 dsymv (up to 80%).
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multi-GPU kernel 1: BLAS-3 SYR2K symmetric rank-k updates

a sequence of “small” CUBLAS calls on streams to exploit data parallelism
where A is statically distributed among GPUs in 1DBC
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» each GPU updates block columns of its local submatrix
> SYR2K(V;, W,) on diagonal block, and

GEMM(V,T, W;.y) and GEMM(W,T, V,.y) on off-diagonal

»  multiple GPU streams cyclically on block columns
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performance of SYR2K on multiple GPUs (keeneland: three NVIDIA M2090 GPUS/node).

Double Complex Double Real
1200 1200
—3GPUs —3GPUs
—2GPUs —2GPUs
1000}| —1 GPU //_/-»/V—”W 1000 —1 GPU ]
—— MKL / —MKL
4 2
Q Q
2 2
5] 5}
0 / L L L L L L 0 = L L L L L
0 1000 2000 3000 4000 5000 6000 7000 0 2000 4000 6000 8000 10000
Matrix size

Matrix size

high data-parallelism
> peak double precision performance = 665Gflop/s — 40% of the peak

» 430 and 380 Gflops by zgemm and dgemm — 75% of gemm

> only about 15% of the reduction time is spent here
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multi-GPU kernel 2: BLAS-2 SYMV symmetric matrix-vector multiplication

a specialized CUDA kernel to minimize data traffic for multiply with local matrix

(an extension of our SC'11 paper).
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» each GPU thread processes a block row
» as each block Aj; is read, we multiply with A;; and Al.}.—

- each thread writes its partial result to its own workspace
- another kernels is launched to sum the partial results

- Ais read only once from the GPU memory
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performance of SYMV on multiple GPUs (keeneland: three NVIDIA M2090 GPUSs/node).
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bandwidth-limited operation:
» zhemv performs twice more operations — twice the Gflop/s

> 120GB/sec with ECC on — peaks are 120 and 60 Gflop/s for zhemv and dsymv
— 65% — 75% of this peak
— 15% — 20% of gemm

> up to 80% of the reduction time is spent here
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putting them together: multi-GPU tridiagonalization

1 statically distribute A in 1DBC
2 for each panel
2.1  panel factorization
for each column in the panel
2.1.1 update a; with previous v and w on CPUs
2.1.2 compute Householder reflector on CPUs
2.1.3 broadcast reflector to all GPUs
2.1.4 SYMYV of local submatrices on GPUs in parallel
2.15 copy vector v; back to CPU
2.1.6  compute w; on CPUs
2.2 trailing submatrices update
221 broadcast V and W to GPUs
222 SYR2K of local submatrix on GPUs in parallel

for each GPU call, communicate:

n?+n

P local matrix (2><gpus

data) from GPU memory

P vector(s) (n or nk data) between CPU and GPU (non-blocking MPI + GPU streams)
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hybrid CPU-GPU computing with asynch. MPI and GPU communication

» SYR2K: hide communication of V or W behind panel factorization
using asynch MPI send and dedicated GPU stream

> SYMV: overlap CPU and GPU computation (and hide CPU-GPU communication)
for multiplying with updated A (left-look within panel, right-look between panels),

(A-VWT —wVT)y,
where A is A x A, while V and W are A x (U —1).

- /ZVJ on GPUs, while (VWT + WVT)VJ (and updating next column) on CPUs.
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- a piece of a trace on 3 GPUs -
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Performance on Keeneland: ScaLAPACK

> Keeneland: two 8-core 2.6GHz Intel Xeon processors (SandyBridge)
and three NVIDIA Tesla M2090 GPUs.

> weak-scaling studies: matrix size = 11,520 x (number of nodes)%.
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» hybrid-programming performed well
- 1MPI/socket obtained best computation and communication performance
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Performance on Keeneland: ScaLAPACK+1GPU /node
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» GPU-extension got reasonable speedups
- significant speedups over 1MPI/core or 1IMPI/node.

- similar performance as 1MPI/socket.
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Performance on Keeneland: ScaLAPACK+3GPUs/node
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» GPU-extension got reasonable speedups

» it is difficult to scale to large-scale,
- non-blocking MPI-GPU comm. to reduce waiting time
— MPI communication starts fo dominate.
- GPU kernel to reduce computation time

— GPU efficiency goes down on many nodes
1 both of which may be addressed by 2DBC.
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Performance of SYMV in 2DBC vs. 1DBC

——8-by-8 GPU—grid
25000 4 by 64 GPU—grid]
—— 4-by-4 GPU—grid
1-by-16 GPU-grid| =
20001 —— 2_by-2 GPU_grid 2DBC on 64 GPUs
—— 1-by—4 GPU—-grid
2 1500
s 1DBC on 64 GPUs
5 P
1000 ALV
2DBC on 16 GPUs
500 1DBC-on16:GPUs
2DBC on 4 GPUs
—_ 1DBC on 4 GPUs
o 05 1 2 25 3

> local submatrix is closer to square with 2DBC
- GPU-kernel performs better on a square matrix
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Matrix size

> it is being integrated into ScaLAPACK.
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Current and future work:

» 2DBC (or any other suggestion?) to obtain higher-performance
- to reduce communication and to improve GPU utilization

- larger-scale studies and distributed Kepler?

> runtime system? two-stage on distributed GPUs?
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