
Improving the Performance of CA-GMRES
on Multicores with Multiple GPUs

Ichitaro Yamazaki∗, Hartwig Anzt∗, Stanimire Tomov∗, Mark Hoemmen§, and Jack Dongarra∗
∗University of Tennessee, Knoxville, USA

§Sandia National Laboratory, New Mexico, USA

iyamazak@eecs.utk.edu, hanzt@icl.utk.edu, tomov@eecs.utk.edu, mhoemme@sandia.gov, and dongarra@eecs.utk.edu

Abstract—The Generalized Minimum Residual (GMRES)
method is one of the most widely-used iterative methods for
solving nonsymmetric linear systems of equations. In recent
years, techniques to avoid communication in GMRES have gained
attention because in comparison to floating-point operations,
communication is becoming increasingly expensive on modern
computers. Since graphics processing units (GPUs) are now
becoming crucial component in computing, we investigate the
effectiveness of these techniques on multicore CPUs with multiple
GPUs. While we present the detailed performance studies of a
matrix powers kernel on multiple GPUs, we particularly focus
on orthogonalization strategies that have a great impact on both
the numerical stability and performance of GMRES, especially
as the matrix becomes sparser or ill-conditioned. We present
the experimental results on two eight-core Intel Sandy Bridge
CPUs with three NDIVIA Fermi GPUs and demonstrate that
significant speedups can be obtained by avoiding communication,
either on a GPU or between the GPUs. As part of our study, we
investigate several optimization techniques for the GPU kernels
that can also be used in other iterative solvers besides GMRES.
Hence, our studies not only emphasize the importance of avoiding
communication on GPUs, but they also provide insight about the
effects of these optimization techniques on the performance of the
sparse solvers, and may have greater impact beyond GMRES.

I. INTRODUCTION

Many scientific and engineering simulations require solving
sparse linear systems of equations. A direct method provides
a numerically stable way to solve such a linear system with
a predictable number of floating point operations (flops).
However, for a large-scale linear system, the storage and/or
computational costs of a direct factorization may be unfea-
sibly expensive. A parallel computer with a large aggregated
memory and a high computing capacity may provide a remedy
to this large cost of direct factorization, but the per-CPU
memory requirement or the factorization time of a parallel
direct solver may not scale due to the extensive amount
of communication or the associated memory overhead for
the message buffers. As a result, an iterative method may
become more attractive or could be the only feasible alter-
native. Among the most widely-used iterative methods are
Krylov subspace methods [1], [2], because of their smooth
and well-studied convergence behaviors, and the Generalized
Minimum Residual (GMRES) method [3] is one of the popular
methods for a nonsymmetric linear system and converges with
monotonically non-increasing residual norms.

On modern computers, in comparison to flops, communi-
cation is becoming increasingly expensive in terms of both
required cycle time and energy consumption. To address
this challenge, in recent years, several techniques to avoid
communication in various algorithms, including GMRES [4],
have gained attention. While graphics processing units (GPUs)
have become crucial components in scientific and engineering
computing, the same challenge exists on the GPUs, where
the gap between the arithmetic and communication costs is
growing. In this paper, we study the potential of using such
communication-avoiding techniques for GMRES on multicore
CPUs with multiple GPUs, providing the detailed perfor-
mance studies of both a matrix powers kernel and several
orthogonalization procedures that often dominate the GMRES
iteration time. As part of our studies, we investigate several
optimization techniques for the GPU kernels that are required
for GMRES. Since these kernels are also needed for other
sparse solvers, the current studies not only emphasize the
importance of avoiding communication both on a GPU and
between the GPUs, but they also provide insights on the
effects of these optimization techniques on the performance
of a sparse solver.

The rest of the paper is organized as follows: in Section II,
we first survey related work. Then in Section III, we review
Communication-Avoiding GMRES (CA-GMRES) and provide
a high-level description of our implementation on multicore
CPUs with multiple GPUs. Next, in Sections IV and V, we
describe our implementations of the matrix powers kernel and
of various orthogonalization procedures, and demonstrate their
performance. Finally, in Section VI, we study the performance
of CA-GMRES with multiple GPUs, and in Section VII, we
provide final remarks. Throughout this paper, the i-th row and
the j-th column of a matrix V are denoted by vi,: and v:,j ,
respectively, while Vj:k is the submatrix consisting of the j-th
through the k-th columns of V , and V (i, j) is the submatrix
consisting of the rows and columns of V that are given by
the row and column index sets i and j, respectively. All of
our experiments were conducted on a single compute node of
the Keeneland system1 at the Georgia Institute of Technology.
It consists of two eight-core Intel Sandy Bridge (Xeon E5)
CPUs and three NVIDIA M2090 GPUs.

1https://www.xsede.org/gatech-keeneland

https://www.xsede.org/gatech-keeneland

x̂ := 0 and v:,1 := b/‖b‖2.
repeat (restart-loop)

Projection Subspace Generation (inner-loop):
for j = 1, 2, . . . ,m do

SpMV: Generate a new vector v:,j+1 := Av:,j .
Orth: Orthogonalize v:,j+1 against v:,1,v:,2, . . . ,v:,j .

end for
Projected Subsystem Solution (restart):
Compute the solution x̂ in the generated subspace,

which minimizes its residual norm.
Set v:,1 := r/‖r‖2, where r := b−Ax̂.

until solution convergence.

Fig. 1. Pseudocode of GMRES(m).

II. RELATED WORK

Chapter 3 of Hoemmen’s PhD dissertation [4] describes
CA-GMRES in detail. Chapter 7 explains the importance
of picking right basis in the matrix powers kernel (MPK).
Chapter 2 gives an extensive overview of the computational
kernels that CA-GMRES uses, including MPK with or without
preconditioning, the tall-skinny QR (TSQR) factorization with
an emphasis on the communication-avoiding QR (CAQR),
and its associated block orthogonalization (BOrth). The work
includes performance models that show how CAQR and MPK
reduce the number of memory movements and the parallel
communication latency. Demmel et al. [5] refine these models
for general dense QR factorization algorithms.

Mohiyuddin et al. [6] provide shared-memory parallel per-
formance results for CA-GMRES on a single compute node
of multicore CPUs. The authors show the importance of the
orthogonalization step for good CA-GMRES performance,
while a similar study is conducted for a CA-Lanczos on a
distributed-memory system in [7]. Anderson et al. [8] imple-
ment a version of a CAQR (used as the panel factorization
of a general QR factorization) on a single GPU. They then
apply it to solve optimization problems for image process-
ing. Hoemmen [9] describes a hybrid-parallel (MPI+threads)
implementation of CAQR and block Gram-Schmidt orthogo-
nalization in the Trilinos software framework. In his work, he
compares performance of CAQR and block Gram-Schmidt as a
combined orthogonalization procedure, against both the classi-
cal and modified Gram-Schmidt procedures. Finally, Demmel
et al. [10] recently describe a communication-avoiding rank-
revealing QR factorization with column pivoting.

There are several different GMRES implementations on
GPUs. CUSP [11] and PARALUTION [12] target a single
NVIDIA GPU using CUDA, while ViennaCL [13] provides
a more platform-independent support for a single GPU using
OpenCL. PETSc [14] and Trilinos [15] have growing supports
for multiple GPUs based on NDIVIA CUBLAS and CUS-
PARSE [16], in particular for iterative solvers.

III. COMMUNICATION-AVOIDING GMRES

Figure 1 shows the pseudocode of a standard GMRES for
computing an approximate solution x̂ to a linear system of
equations Ax = b. The j-th GMRES iteration first generates a

x̂ := 0 and v:,1 := b/‖b‖2.
repeat (restart-loop)

Projection Subspace Generation (inner-loop):
for j = 1, s+ 1, 2s+ 1, . . . ,m do

MPK: Generate new vectors v:,k+1 := Av:,k

for k = j, j + 1, . . . ,min(j + s,m).
BOrth: Orthogonalize Vj+1:j+s+1 against V1:j .
TSQR: Orthogonalize the vectors within Vj+1:j+s+1.

end for
Projected Subsystem Solution (restart):
Compute the solution x̂ in the generated subspace,

which minimizes its residual norm.
Set v:,1 := r/‖r‖2, where r := b−Ax̂.

until solution convergence.

Fig. 2. Pseudocode of CA-GMRES(s,m).

new Krylov basis vector v:,j+1 through a sparse matrix-vector
product (SpMV), followed by the orthonormalization (Orth)
of v:,j+1 against the previously-generated orthonormal basis
vectors v:,1,v:,2, . . . ,v:,j . To reduce both the computational
and storage requirements of computing a large projection
subspace, the iteration is restarted after computing a fixed
number m + 1 of basis vectors. Before restart, the ap-
proximate solution x̂ is updated by solving a least-squares
problem y := arg minz ‖c−Hz‖, where c := V T1:m+1r,
H := V T1:m+1AV1:m, and x̂ := x̂ + V1:my. The matrix H ,
obtained as a by-product of the orthogonalization procedure
(see Section V), is in an upper Hessenberg form. Hence, the
least-squares problem can be efficiently solved, requiring only
about 3(m + 1)2 flops, while for an n-by-n matrix A with
nnz(A) nonzeros, SpMV and Orth require a total of about
2m·nnz(A) and 2m2n flops over the m iterations, respectively
(i.e., n� m).

Both SpMV and Orth require communication. This includes
point-to-point messages or neighborhood collectives for SpMV,
and global all-reduces in Orth, as well as data movements
between the levels of the local memory hierarchy (for read-
ing the sparse matrix and for reading and writing vectors,
assuming that they are not small enough to fit in cache).
CA-GMRES (see Figure 2 for its pseudocode) aims to reduce
this communication. It does so by redesigning the algorithm
to replace SpMV and Orth with three new kernels – MPK,
BOrth, and TSQR – that generate and orthogonalize a set of s
basis vectors all at once. In theory, this communicates no more
than a single GMRES iteration (plus a lower-order term), but
accomplishes the work of s iterations. In Sections IV and V,
we discuss these three computational kernels in detail.

To utilize GPUs, we distribute the matrix A and the basis
vectors v:,1,v:,2, . . . ,v:,m+1 in a block row format (in Sec-
tion IV, we discuss the distribution of A in more detail). We
then generate the basis vectors on the GPUs, while the least-
squares problem is solved on the CPUs. While our objective
of this paper is to compare the performance of CA-GMRES
with that of GMRES on the GPUs, Figure 3 compares the
performance of GMRES on the GPUs with that of our CPU
implementation of GMRES that uses a threaded version of

CPU +1GPU +2GPUs +3GPUs CPU +1GPU +2GPUs +3GPUs
0

2

4

6

8

10

12

14

16

18

20

T
ot

al
 S

ol
ut

io
n

T
im

e
(s

)

Rest

Orthgo

SpMV

G3_circuit

cant

Fig. 3. Performance of GMRES on 16-core Sandy Bridge CPUs with up to
three NDIVIA M2090 GPUs. CPU code is linked to MKL 2011 sp1.8.273,
and SpMV uses the CSR or ELLPACK format on CPU or GPUs, respectively.

MKL for SpMV and Orth. Clearly, this may not be a fair
comparison since MKL may not be optimized for the matrices
arising from GMRES. However, the figure provides a reference
point to our GMRES performance on the GPUs.

IV. MATRIX POWERS KERNEL

For SpMV on multiple GPUs, the communication of the
distributed vector elements through the PCI Express bus
could become a bottleneck. To reduce this bottleneck, given
a starting vector v:,j , MPK communicates all the required
vector elements at once so that each GPU can independently
compute the local components of the s matrix-vector prod-
ucts Av:,j , A

2v:,j , . . . , A
sv:,j without further communication.

Here, in Section IV-A, we first describe our MPK implementa-
tion on multiple GPUs, and then in Section IV-B, we measure
its performance for different test matrices. For our discussion,
we use A(d) and V (d) to denote the local matrices on the d-th
GPU, while ng is the number of available GPUs.

A. Implementation

Figure 4 shows the MPK pseudocode. Here, v(d,k) =
vi(d,k),k and i(d,k) is the index set of the rows of the k-th
vector v:,k, which are required to compute v

(d)
:,s+1 (for k =

1, 2, . . . , s). The row index set i(d,k) is the union of two
disjoint sets i(d,k+1) and δ(d,k), where i(d,s+1) is the row index
set of the d-th local submatrix

(
i.e., A(d) = A(i(d,s+1), :)

)
,

and δ(d,k) contains the remaining row indexes in i(d,k). In the
adjacency graph of A, the set i(d,k) is the set of the vertices
that are reachable through at most s−k+1 edges from a vertex
in i(d,s+1), and δ(d,k) is the set of the vertices whose shortest
path from a vertex in i(d,s+1) is of length s−k+1 (see Figure 5
for an illustration). In our implementation, before the iteration
begins, the k-th boundary set δ(d,k) is computed on the CPU
based on the following recursion for k = s, s− 1, . . . , 1:

δ(d,k) :=
⋃

i∈i(d,k+1)

str
(
a
(d,k+1)
i,:

)
\ i(d,k+1),

where str(a(d,k+1)
i,:) is the column index set of the nonzeros

in the i-th row of the local submatrix A(d,k+1) which is

Setup: exchange elements of v:,1 to form v(d,1)

for d = 1, 2, . . . , ng do
compress elements of v(d)

:,1 needed by other GPUs into w(d)

asynchronously send w(d) to CPU
end for
for d = 1, 2, . . . , ng do

expand w(d) into a full vector w on CPU
end for
for d = 1, 2, . . . , ng do

compress elements of w required by d-th GPU into w(d)

asynchronously send w(d) to d-th GPU
copy the local vector v(d)

:,1 into z
(d,1)

i(d,1),:

expand w(d) into a full vector z(d,1)

end for

Matrix Powers: generate v
(d)
:,2 ,v

(d)
:,3 , . . . ,v

(d)
:,s+1

for k = 1, 2, . . . , s do
for d = 1, 2, . . . , ng do

SpMV: compute y(d) := A(d,k)z(d,k%2)

expand y(d) into a full vector z(d,(k+1)%2)

copy the local part y(d)

i(d,1)
of y(d) into v

(d)
:,k+1

end for
end for
———————————————————————————————
Notations used for MPK:
A(d), v(d) : local matrix/vector on d-th GPU
i(d,s+1) : row index set of A(d), i.e., A(d) = A(i(d,s+1), :)

i(d,k) : row index set of v:,k needed for MPK, i.e., i(d,k+1) ⋃ δ(d,k)

δ(d,k:s) : k-th boundary set, i.e.,
⋃

k≤`≤s δ
(d,`) or i(d,k) \ i(d,s+1)

v(d,k) : rows of v:,k required by MPK, i.e., vi(d,k),k

Fig. 4. Pseudocode of Matrix Powers Kernel, MPK(s, v:,1).

Fig. 5. Illustration of Surface-to-Volume Dependencies.

the submatrix of A consisting of the rows given by i(d,k+1)(
i.e., A(d,k+1) = A(i(d,k+1), :)

)
.

MPK trades additional storage and computation, and poten-
tially greater communication volume, for communication la-
tency. It reduces the number of communication phases between
GPUs by a factor of s, but the d-th GPU requires additional
memory to store the boundary submatrix A(δ(d,1:s), :), where
δ(d,k:s) = i(d,k) \ i(d,s+1). Furthermore, at the k-th step
of MPK, in addition to multiplying a vector with the local
submatrix A(d), the d-th GPU must compute a multiplication

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

s

S
ur

fa
ce

/V
ol

um
e

R
at

io

3 GPUs (natural)

2 GPUs (natural)

3 GPUs (RCM)

2 GPUs (RCM)

3 GPUs (KWY)

2 GPUs (KWY)

(a) G3_circuit matrix.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

1

1.2

s

S
ur

fa
ce

/V
ol

um
e

R
at

io

3 GPUs (natural)

2 GPUs (natural)

3 GPUs (RCM)

2 GPUs (RCM)

3 GPUs (KWY)

2 GPUs (KWY)

(b) cant matrix.

Fig. 6. Surface-to-Volume Ratio in Matrix Powers Kernel.

with the k-th boundary submatrix A(δ(d,k:s), :). Finally, to
generate the m basis vectors over the GMRES restart-loop,
the d-th GPU must gather the total of O(ms |δ

(d,1:s)|) vector
elements, where |δ(d,1:s)| is the size of the index set δ(d,1:s).
For s > 1, this total communication volume could be greater
than that required by SpMV. The amount of these storage,
computational, and communication overheads depend on the
sparsity structure of the matrix A. We study these in Sec-
tion IV-B for different matrices.

Generating the monomial basis vectors based on the above
MPK is often numerically unstable, leading to a stochastic
convergence of the CA-GMRES iterations. This is because
the generated basis vectors converge to the eigenvector cor-
responding to the most dominant eigenvalue of A with the
ratio |λ2/λ1|, where λ1 and λ2 are the dominant and the
second dominant eigenvalues of A, respectively. Hence, the
condition number of the monomial basis V1:k+1 increases
exponentially. To avoid this numerical instability, our MPK
can generate a Newton basis v:,k+1 = (A − θkI)v:,k, where
the k-th shift θk is an eigenvalue of the Hessenberg matrix H
from the first restart and approximates an extreme eigenvalue
of the matrix A [17]. To further improve the stability, these
shifts are ordered in a Leja ordering, such that the distance
between two consecutive shifts is maximized. If we encounter
a complex shift for a real-precision matrix A, we rearrange
the arithmetics so that the complex arithmetic is avoided [4,
Section 7.3.2]. Since these shifts are not available for the first
restart-loop, we use the standard GMRES iterations.

B. Performance Studies

The performance of MPK strongly depends on the spar-
sity structure of the matrix A. One of the performance-
impact factors is a so-called surface-to-volume ratio which
quantifies how the local diagonal block A(i(d,s+1), i(d,s+1))
is connected to the other diagonal blocks through the off-
diagonal submatrix A(i(d,s+1), δ(d,s)). Figure 6 plots the ratio
nnz(A(δ(d,1:s), :))/nnz(A(d)) to study the increase in this
surface-to-volume ratio with respect to the parameter s (see
Figure 12 for matrix properties). This ratio also quantifies
the additional memory needed to store the boundary subma-

trix A(δ(d,1:s), :) in comparison to the memory needed to store
the local matrix A(d). Since the natural matrix ordering in
some cases leads to the full index set i(d,1), even for a small
value of s, we tested using two matrix reordering algorithms,
the reverse Cuthill-McKee (RCM) [18] from HSL2 and a
k-way graph partitioning (KWY) of METIS3. We observe
that for G3_circuit, the matrix reordering significantly
reduces the surface-to-volume ratio, but the ratio still increases
superlinearly with respect to s. On the other hand, cant is
naturally banded, and the surface-to-volume ratio increases
almost linearly with all the ordering schemes.

For given A(d), Figure 6 also shows the additional computa-
tion W (d,s) required by MPK, which is the area between the
x-axis and plot

(
i.e., W (d,s) = 2

∑s
k=1 nnz(A(δ(d,k:s), :))

)
.

Hence, the total computational overhead over the m it-
erations is given by m

s W
(d,s). For instance, if the sur-

face nnz(A(δ(d,1:s), :)) increases linearly with s, then W (d,s)

is a quadratic function of s and the total computational
overhead over a restart-loop increases linearly with s.

Next, in Figure 7, we show the total communication
volume required by MPK for different values of s:
i.e., m

s (|
⋃
d δ

(d,1:s)| +
∑
d |δ

(d,1:s)|), where the first
term |

⋃
d δ

(d,1:s)| represents the communication to gather the
required vector elements from the GPUs to the CPU, while
the second term

∑
d |δ

(d,1:s)| represents the communication
to scatter the required elements to the GPUs. In particular,
for cases where the index set size |δ(d,1:s)| increases linearly
with s, the total communication volume will stay constant
or even decrease with s. For both G3_circuit and cant,
though the increase in |δ(d,1:s)| slowed down for larger s, it
increased relatively fast for small s. Hence, for larger value
of s (e.g., s > 5), the communication volume grew slowly,
but in comparison to SpMV, MPK required a greater total
communication volume over the m iterations. For the naturally

2http://www.hsl.rl.ac.uk/catalogue/mc60.xml With either the natural or
RCM ordering, the matrix is distributed such that each GPU has about an
equal number of rows.

3http://glaros.dtc.umn.edu/gkhome/metis/metis/overview. We also tested us-
ing recursive bisection algorithms, but the k-way partitioning that minimizes
the edge-cut often gave smaller surfaces and better load balances.

http://www.hsl.rl.ac.uk/catalogue/mc60.xml
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10
5

10
6

10
7

s

T
ot

al
 C

om
m

un
ic

at
io

n
V

ol
um

e

3 GPUs (natural)

2 GPUs (natural)

3 GPUs (RCM)

2 GPUs (RCM)

3 GPUs (KWY)

2 GPUS (KWY)

(a) G3_circuit matrix.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

4

s

T
ot

al
 C

om
m

un
ic

at
io

n
V

ol
um

e

3 GPUs (natural)

2 GPUs (natural)

3 GPUs (RCM)

2 GPUs (RCM)

3 GPUs (KWY)

2 GPUS (KWY)

(b) cant matrix.

Fig. 7. Communication Volume in Matrix Powers Kernel.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

s

T
im

e
(s

)

Matrix−power on 2 GPUs

Compuation on 2 GPUs

Matrix−power on 3 GPUs

Computation on 3 GPUs

(a) G3_circuit matrix with k-way partitioning.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.02

0.025

0.03

0.035

0.04

0.045

s

T
im

e
(s

)

Matrix−power on 2 GPUs

Compuation on 2 GPUs

Matrix−power on 3 GPUs

Computation on 3 GPUs

(b) cant matrix with natural ordering.

Fig. 8. Performance of Matrix Powers Kernel.

banded cant, KWY lead to greater communication volume
than using RCM. However, KWY computes partitioning
to minimize the edge cut and to balance the load among
the GPUs, and it often rendered smaller communication
volume for other matrices. For instance with G3_circuit,
though KWY and RCM required about the same amount of
communication for a large value of s, the communication
volume using KWY was smaller for a small s.

Finally, Figure 8 shows the performance of our MPK to
generate the total of one hundred vectors (i.e., m = 100).
In addition to the total run time including the communication
(solid line), we show the time spent in SpMV (dashed line).
As we discussed above (see Figure 6), the flop count increases
almost linearly with s for these two test matrices, and we see in
Figure 8 that the computation time with SpMV also increases
linearly. On the other hand, the communication time (the gap
between the solid and dashed lines) decreases significantly
compared to the standard algorithm (s = 1). This is because,
though the communication volume increases (see Figure 7),
the latency is reduced by a factor of s. As a result, the
communication time decreases quickly with a small value of
s, and then it starts to increase slightly as the communication
bandwidth becomes dominant for a larger value of s. This
indicates that the latency, together with the setups required
for calling MPK (e.g., gathering and scattering of the vector

elements) often has a greater impact on the performance of
MPK than the bandwidth does, especially on a small number
of GPUs.4 In the end, MKP reduces the run time by up to
16% and 11% using s > 1 for the cant and G3_circuit
matrices, respectively.

V. ORTHOGONALIZATION KERNELS

The orthogonalization process in GMRES may take as much
or more time than the sparse matrix-vector products. While in
Section IV, we focused on reducing communication of SpMV
between GPUs, in this section we consider the communication
of TSQR (and BOrth) both between the GPUs and on a
GPU. In Sections V-A through V-E, we first describe the
five orthogonalization procedures that we have implemented
on the GPUs. Then, in Section V-F, we study their TSQR
performance using random matrices. We defer investigation
of their numerical stability within CA-GMRES to Section VI.

A. Modified Gram-Schmidt Procedure

For TSQR, Modified Gram-Schmidt (MGS) orthogonalizes
each column v:,k of Vj+1:j+s+1 against the previously orthog-
onalized columns v:,j+1, v:,j+2, . . . , v:,k−1, one at a time: i.e.,

4Here, we compare the performance of MPK with that of MPK using
s = 1, which in comparison to SpMV, performs one extra copying of the
local vector v(d) at each step on the GPU. In Section VI, we compare the
performance of SpMV in GMRES with that of MPK in CA-GMRES.

for ` = j + 1, j + 2, . . . , k − 1,

v:,k := v:,k − v:,`(v
T
:,`v:,k).

MGS was numerically stable for TSQR in our experiments.
However, to orthogonalize each v:,k, it requires the k− j − 1
dot products r`,k := vT:,`v:,k, each of which requires a global
reduction between the GPUs. Specifically, for our implementa-
tion to orthogonalize v:,k against v:,`, the d-th GPU first forms
its local dot product r(d)`,k := v

(d)T
:,` v

(d)
:,k and asynchronously

sends the result to the CPU. Then, the CPU computes the
final product r`,k :=

∑ng

d=1 r
(d)
`,k and copies r`,k back to the

GPUs for the local orthogonalization v
(d)
:,k := v

(d)
:,k − r`,kv

(d)
:,` .

MGS can be used for BOrth to orthogonalize the set of
s+1 vectors Vj+1:j+s+1 against the previously orthogonalized
vectors V1:j : i.e., for ` = 1, 2, . . . , j,

Vj+1:j+s+1 := Vj+1:j+s+1 − v:,`(v
T
:,`Vj+1:j+s+1).

Though the s + 1 vectors Vj+1:j+s+1 are orthogonalized
against v:,` at once, BOrth still communicates j times.

B. Classical Gram-Schmidt Procedure
For TSQR, Classical Gram-Schmidt (CGS) orthogonalizes

each column v:,k of Vj+1:j+s+1 against the previously or-
thogonalized columns v:,j+1, v:,j+2, . . . , v:,k−1, all at once:
i.e.,

v:,k := v:,k − Vj+1:k−1(V Tj+1:k−1v:,k).

Hence, CGS aggregates all the communication to orthogo-
nalize each v:,k into a single message, and in comparison
to MGS, it reduces the communication latency by a factor
of k − j − 1. Namely, to orthogonalize v:,k, we first let the
GPUs independently compute their local matrix-vector prod-
ucts, rj+1:k−1,k := V

(d)T
j+1:k−1v

(d)
:,k . Then, the CPU accumu-

lates these local products, rj+1:k−1,k :=
∑ng

d=1 r
(d)
j+1:k−1,k. Fi-

nally, each GPU independently orthogonalizes its local vector,
v
(d)
:,k := v

(d)
:,k − V

(d)T
j+1:k−1rj+1:k−1,k. CGS relies on BLAS-2

matrix-vector products, in contrast to MGS that relies on
BLAS-1 dot products. As a result, in comparison to MGS,
CGS not only reduces the latency, but also improves the data
locality of accessing v

(d)
:,` on each GPU.5

Just like MGS, CGS can be used for BOrth:

Vj+1:j+s+1 := Vj+1:j+s+1 − V1:j(V T1:jVj+1:j+s+1).

Though it only requires a singe matrix-matrix product, in
practice, the previous vectors are not completely orthogonal,
and CGS results in a faster loss of orthogonality than when
MGS is used. Though restarting the GMRES iteration helps to
maintain orthogonality, a reorthogonalization is often required.

5We investigated a fused CGS that fuses the computation of the norm
‖v:,k‖2 with the matrix-vector product V T

1:k−1v:,k [19]. It replaces a reduc-
tion of CGS with a synchronization to check for the numerical stability on
the GPU. We have not seen a significant performance improvement from this
approach in our experiments. We have also studied a pipelined GMRES [19] to
overlap SpMV to compute v:,j+1 on the GPU with the matrix-vector product
to orthogonalize the previous vector v:,j on the CPU. The matrix-vector
product with tall skinny matrices on the GPU was more efficient than that on
CPU, and using the CPU often slowed down the procedure in our experiments.
MGS that computes rk,: at once would perform as well as CGS.

C. Cholesky QR Factorization

For TSQR, Cholesky QR (CholQR) orthogonalizes the set
of s + 1 vectors Vj+1:j+s+1 at once in three steps. It first
forms the Gram matrix B := V Tj+1:j+s+1Vj+1:j+s+1 on the
CPU through the local matrix-matrix product

B(d) := V
(d)T
j+1:j+s+1V

(d)
j+1:j+s+1

on the GPU, followed by the reduction B :=
∑ng

d=1B
(d) on

the CPU. Then, the CPU computes its Cholesky factor R of B
(i.e., RTR := B). Finally, the GPU orthogonalizes Vj+1:j+s+1

by a triangular solve V
(d)
j+1:j+s+1 := V

(d)
j+1:j+s+1R

−1. This
orthogonalizes the set of s + 1 vectors with a single pair of
GPU-to-CPU and CPU-to-GPU communications, while MGS
and CGS would require (s+1)(s+2)/2 and s+1 reductions,
respectively. Furthermore, the computation of B(d) is based
on a BLAS-3 matrix-matrix product instead of BLAS-1 or
BLAS-2 products in MGS and CGS, respectively. Hence, the
data locality of accessing the previous columns V1:k−1 can be
optimized not only to orthogonalize v

(d)
:,k (like CGS) but also

to orthogonalize all the remaining columns V (d)
k+1:s+1.

Unfortunately, the condition number of B is the square of
the condition number of Vj+1:j+s+1. This often causes numer-
ical instabilities, especially in CA-GMRES, where Vj+1:j+s+1

can be ill-conditioned (see Section VI).

D. Singular Value QR Factorization

When the matrix Vj+1:j+s+1 is ill-conditioned, or one
of the column vectors is a linear combination of the other
columns, the Cholesky factorization of its Gram matrix may
fail. To overcome this numerical challenge, the Singular
Value QR (SVQR) computes the upper-triangular matrix R
by first computing the singular value decomposition (SVD)
of the Gram matrix, UΣUT := B, and then the QR factor-
ization QR := Σ

1
2UT . Though computing the SVD and QR

factorization is more expensive than computing the Cholesky
factorization, the dimension of the Gram matrix is much
smaller than that of the original matrix A (i.e., s� n). Hence,
just like CholQR, SVQR performs most of its flops through
the BLAS-3 matrix-matrix product to form the Gram matrix,
and it requires only a pair of the CPU-GPU communications.

In some rare instances, CA-GMRES converged with
CholQR but not with SVQR. A reason for this could be that
the matrix Vj+1:j+k generated by MPK becomes increasingly
ill-conditioned as k increases, and the condition number of
the leading matrix B(1 : k, 1 : k) is the square of the
condition number of Vj+1:j+k. In the Cholesky factorization,
the matrix B is factorized from the top-left of the matrix to the
bottom-right, and the error introduced during the Cholesky fac-
torization of the trailing submatrix B(k+1 : s+1, k+1 : s+1)
is localized within itself. Furthermore, the Gram matrix from
MPK is graded, and this property seems to help maintain the
positive diagonals during the Cholesky factorization. Similarly,
in the first step of SVD to bidiagonalize the Gram matrix
through the Householder transformations, the numerical errors
are localized. However, during the SVD of the bidiagonal

Modified Gram-Schmidt
for k = 1, 2, . . . , s+ 1 do

for ` = 1, 2, . . . , k − 1 do
for d = 1, 2, . . . , ng do
r
(d)
`,k := v

(d)T
:,` v

(d)
:,k

end for
r`,k :=

∑
r
(d)
`,k

on CPU (comm)
for d = 1, 2, . . . , ng do

copy r`,k to GPU-d (comm)
v
(d)
:,k := v

(d)
:,k − v

(d)
:,k r`,k

r
(d)
k,k := v

(d)T
:,k v

(d)
:,k

end for
end for

rk,k :=
√∑

r
(d)
k,k

on CPU (comm)
for d = 1, 2, . . . , ng do

copy rk,k to GPU-d (comm)
v
(d)
:,k := v

(d)
:,k /rk,k

end for
end for

Classical Gram-Schmidt
for k = 1, 2, . . . , s+ 1 do

for d = 1, 2, . . . , ng do
r
(d)
1:k−1,k := V

(d)T
1:k−1v

(d)
:,k

end for
r1:k−1,k :=

∑
r
(d)
1:k−1,k

on CPU (comm)
for d = 1, 2, . . . , ng do

copy r1:k−1,k to GPU-d (comm)
v
(d)
:,k := v

(d)
:,k − V

(d)
1:k−1r1:k−1,k

r
(d)
k,k := v

(d)T
:,k v

(d)
:,k

end for

rk,k :=
√∑

r
(d)
k,k

on CPU (comm)
for d = 1, 2, . . . , ng do

copy rk,k to GPU-d (comm)
v
(d)
:,k := v

(d)
:,k /rk,k

end for
end for

Cholesky QR
for d = 1, 2, . . . , ng do

B(d) := V
(d)T
1:s+1V

(d)
1:s+1

end for
B :=

∑
B(d) on CPU (comm)

R := chol(B) on CPU
for d = 1, 2, . . . , ng do

copy R to GPU-d (comm)
V

(d)
1:s+1 := V

(d)
1:s+1R

−1

end for

Communication-Avoiding QR
for d = 1, 2, . . . , ng do

[V
(d)
1:s+1, R

(d)] := qr(V
(d)
1:s+1)

copy R(d) to CPU (comm)
end for
[[Q(1);Q(2); . . . , Q(ng)], R] =

qr([R(1);R(2); . . . ;R(ng)])
on CPU

for d = 1, 2, . . . , ng do
copy Q(d) to GPU−d (comm)
V

(d)
1:s+1 := V

(d)
1:s+1Q

(d)

end for

Fig. 9. Pseudocodes of TSQR algorithms, where chol(B) and qr(V (d))
compute the Cholesky and QR factorization of B and V (d), respectively.

matrix, the errors from the bottom-right of the matrix may
propagate to the leading submatrix. In the end, though the
norm-wise errors of both SVQR and CholQR are relatively
small, its element-wise errors could be greater in SVQR,
especially on the top-right of the matrix. Fortunately, we
observe that this numerical issue of SVQR is often resolved by
scaling the Gram matrix such that its diagonals are one [20].
However, we have not identified a test case where CA-GMRES
converges with SVQR but not with CholQR. We study the
numerical behavior of CholQR and SVQR in Section VI.

E. Communication-Avoiding QR Factorization

Communication-avoiding QR (CAQR) orthogonalizes a set
of vectors Vj+1:j+s+1 against each other through a tree re-
duction of the local QR factorizations. Namely, each GPU first
computes the QR factorization of the local matrix V (d)

j+1:j+s+1,
then the local R-factors are gathered on the CPU, and the
final QR factorization is computed on the CPU (see Figure 9
for a pseudocode). Just like CholQR, CAQR requires only a
single pair of the GPU-CPU communication to orthogonalize
Vj+1:j+s+1. However, the local QR factorizations are based
on BLAS-1 and BLAS-2 operations, which often obtain only
a fraction of the BLAS-3 performance in CholQR.6

6Currently, we explicitly form the orthogonal matrix Q. Though this makes
the interfaces to the rest of the routines (e.g., reorthogonalization) simpler, it
doubles the flop count. We plan to investigate the potential of storing Q as
the set of Householder transformations. We will also investigate the effects
of blocking [9] and a potential of using batched QRs on a GPU.

‖I −QTQ‖ # flops # GPU-CPU comm.

MGS [21] O(εκ) 2ns2, BLAS-1 xDOT (s+ 1)(s+ 2)
CGS [22] O(εκs) 2ns2, BLAS-2 xGEMV 2(s+ 1)
CholQR [20] O(εκ2) 2ns2, BLAS-3 xGEMM 2
SVQR [20] O(εκ2) 2ns2, BLAS-3 xGEMM 2
CAQR [5] O(ε) 4ns2, BLAS-1,2 xGEQR2 2

Fig. 10. TSQR(Vj+1:j+s+1), κ is the condition number of Vj+1:j+s+1.

To summarize this subsection, Figure 9 shows the pseu-
docodes of our TSQR implementations, and Figure 10 lists
some of their properties.

F. Performance Studies

The performance of the orthogonalization procedures de-
pends strongly on the performance of the BLAS kernels (see
Figure 10). Figure 11(a) shows the performance of DGEMM
that is used for TSQR with CholQR and SVQR (and for
BOrth with CGS). Clearly, the standard implementation (i.e.,
CUBLAS 4.2) is not optimized for the typical tall-skinny ma-
trices in CA-GMRES (i.e., hundreds of thousands of rows, n,
and tens of columns, s). In fact, the performance of CUBLAS
DGEMM was lower than that of MKL or that of MAGMA
DGEMV, making CholQR based on CUBLAS slower than
CGS based on MAGMA. To improve the performance of
CholQR and SVQR, we investigated the performance of a
batched DGEMM, where we first divided the n-by-(s+1) ma-
trix Vj+1:j+s+1 into h-by-(s+1) submatrices, and then called
the CUBLAS batched DGEMM and performed a reduction
operation to sum up the results of all the DGEMMs. To align
the memory access within each DGEMM, we rounded up the
number of rows, h, to be a multiple of 32. Furthermore, since
the batched kernel assumes the sizes of all the DGEMMs to
be the same, we set the leading dimension to store Vj+1:j+s+1

to be a multiple of h and padded the bottom with zeros. This
routine has the same interface as the standard DGEMM. To
internally call the batched kernel, our routine uses an array of
pointers that point to the beginnings of the submatrices. We
clearly see that this batched DGEMM outperforms the other
implementations and we used it for our implementation of the
orthogonalization procedures.

Figure 11(b) shows the performance of DGEMV that is used
for TSQR based on CGS (and BOrth based on MGS). Similar
to DGEMM, the performance of the standard implementation
(i.e., CUBLAS 4.2) was poor. For instance, the performance
of CUBLAS DGEMV was lower than that of MKL or that
of CUBLAS DDOT, making CGS slower than MGS when
CUBLAS is used to implement these two procedures. We also
tried using the batched DGEMM to compute the matrix-vector
product with this tall-skinny matrix, but the performance was
improved only slightly. To improve the performance of CGS,
we developed an optimized MAGMA DGEMV kernel for tall-
skinny matrices, which computes V Tj+1:k−1v:,k based on dot-
products – each thread block in the new GPU kernel computes
a dot-product between a column of Vj+1:k−1 and v:,k. This
improves the performance of DGEMV by a factor of about
five over the other implementations and is used to implement

10K 30K 50K 70K 90K
0

10

20

30

40

50

60

70

Number of Rows (n)

G
fl
o

p
/s

Batched (h=100)

Batched (h=500)

Batched (h=1000)

MAGMA DGEMV

CUBLAS

MKL

(a) DGEMM to compute V T
1:s+1V1:s+1.

10K 30K 50K 70K 90K
0

5

10

15

20

25

Number of Rows (n)

G
fl
o
p
/s

MAGMA

Batched GEMM (k=1,h=1000)

CUBLAS DDOT

CUBLAS

MKL

(b) DGEMV to compute V T
1:s+1v.

100K 500K 1000K
0

50

100

150

200

250

300

Number of Rows (n)

E
ff
e
c
ti
v
e
 G

fl
o
p
/s

3GPUs

2GPUs

1GPU

CholQR

SVQR

CGS

CAQR

MGS

LAPACK

(c) Performance of TSQR(V1:s+1).

Fig. 11. Performance of DGEMM, DGEMV, and TSQR for a tall-skinny matrix V1:s+1 (s+ 1 = 30).

our orthogonalization procedures.7

Finally, Figure 11(c) shows the performance of TSQR on
up to three GPUs, where “LAPACK” uses DGEQRF and
DORGQR of threaded MKL on 16-core SandyBridge, and
the effective Gflop/s is computed as the ratio of the total
flops required by DGEQRF and DORGQR over the orthog-
onalization time in second. On a single GPU, our routines
obtain the performance of the optimized BLAS kernels; i.e.,
MGS, CGS, and CholQR/SVQR obtain the performance of
DDOT, DGEMV, and DGEMM, respectively. The performance
of CAQR is close to that of MGS because TSQR on each GPU
is based on BLAS-1 and BLAS-2 operations. The figure also
shows that each routine scales well over the three GPUs.

VI. EXPERIMENTAL RESULTS OF CA-GMRES

Finally, in this section, we study the numerical behav-
ior of the different orthogonalization procedures within CA-
GMRES, and the performance of CA-GMRES on multiple
GPUs. One of the parameters that affects the performance
of GMRES is the number of iterations before each restart,
m (a small value of m helps maintain the orthogonality
of the basis vectors and reduces the cost of generating a
larger projection subspace, while too small m leads to slow
convergence or stagnation). Hence, for each test matrix, we use
the parameter m that obtained the shortest solution time on a
single GPU among the values of m = 30, 60, 90, . . . , 180. The
computed solution is considered to have converged when the
`2-norm of the initial residual is reduced by at least four orders
of magnitude. To improve the stability and the convergence,
before the iteration starts, the matrix is balanced; namely, the
rows are first scaled by their norms, and then the columns are
scaled by their norms. Our code was compiled using the GNU
gcc 4.4.6 compiler and CUDA nvcc 4.2 compiler with the
optimization flag -O3, and linked with MKL 2011 sp1.8.273.

7We are investigating other batched kernels (e.g., GEMV, SYRK, and
GEQRF) and the potential of using an auto-tuner to improve the performance
(see [23]). The performance of CholQR/SVQR also depends on the triangular-
solve on a tall-skinny matrix, where we use MAGMA DTRSM that is
developed for the Cholesky or LU factorization.

Name Source n/1000 nnz/n θ1/θ2 κ(B)

cant FEM Cantilever 62 64.2 7.5685
7.5682 3.26e16

G3 circuit Circuit simulation 1, 585 4.8 1.9964
1.9829 8.54e9

dielFilterV2real FEM in EM 1, 157 41.9 5.2766
5.1892 5.81e11

nlpkkt120 KKT optimization 3, 542 26.9 3.6554
3.6127 2.42e7

Fig. 12. Test Matrices, κ(B) is the condition number of the last Gram
matrix from the first restart-loop with the setups in Figure 14.

Figure 12 lists the test matrices from the University of Florida
Matrix Collection that were used for our experiments.

A. Numerical Studies of Orthogonalization Procedures

The bar graph in Figure 13(a) shows the average
TSQR error norms using different orthogonalization pro-
cedures in CA-GMRES(20, 30), where each TSQR com-
putes QR := V , and E./A is the element-wise division
(i.e., (E./V)i,j is ei,j/vi,j). The error bars show the mini-
mum and maximum errors. For this particular matrix, CA-
GMRES with CGS required reorthogonalization to converge,
which is indicated by “2×” in front of CGS in the figure,
and the white bars show the error norms after the first
orthogonalization. All the procedures obtained about the same
factorization errors and residual norm convergence. In term of
the orthogonality errors ‖I −QTQ‖, CholQR and SVQR had
greater errors than MGS due to the squared condition number
of the Gram matrix, while MGS had greater errors than CAQR
because the errors could be amplified by the condition number
of the basis vectors generated by MPK (see Table 10). Fig-
ure 13(b) shows the same error norms in CA-GMRES(30, 30).
The results were similar to those in CA-GMRES(20, 30),
except that the orthogonality errors of CGS were greater
than those of MGS even after reorthogonalization and that
the element-wise errors ‖(A − QR)./A‖ were significantly
greater using CholQR and SVQR, illustrating the effects of
the greater condition number. Some error bars were longer in
CA-GMRES(20, 30) than those in CA-GMRES(30, 30). This
is because with (s,m) = (20, 30), MPK generates 20 and then
10 basis vectors, and the condition number of the basis vectors
is much greater when 20 vectors are generated.

||I−Q^TQ||_1 ||V−QR||_1/||V||_1 ||(V−QR)./V||_max

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

MGS

2×CGS

CholQR

SVQR

CAQR

(a) CA-GMRES(20, 30).

||I−Q^TQ||_1 ||V−QR||_1/||V||_1 ||(V−QR)./V||_max

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

MGS

2×CGS

CholQR

SVQR

CAQR

(b) CA-GMRES(30, 30).

Fig. 13. Average TSQR Errors in CA-GMRES, G3_circuit (1 GPU).

Time (ms)
Ortho/Res

ng TSQR Rest. Total TSQR SpMV/Res Total/Res SpdUp

cant, natural ordering
GMRES(60)
1 MGS 7 167.1 − 36.3 204.3

1 CGS 7 25.7 − 35.7 62.9
2 CGS 7 17.1 − 22.9 40.0
3 CGS 7 14.3 − 21.4 37.1

CA-GMRES(1, 60)
1 – 7 76.3 14.2 36.8 114.7

CA-GMRES(15, 60)
1 CGS 7 20.2 11.2 35.2 58.2

1 2×CholQR 7 12.9 7.1 30.7 44.9 1.40
2 2×CholQR 7 8.2 4.3 21.0 30.3 1.32
3 2×CholQR 7 7.1 3.7 16.0 24.4 1.52

G3 circuit, k-way partitioning
GMRES(30)
1 MGS 16 855.0 − 54.8 931.9

1 CGS 16 193.8 − 56.3 256.3
2 CGS 16 100.0 − 31.3 143.8
3 CGS 16 68.8 − 25.0 100.0

CA-GMRES(1, 30)
1 – 16 568.8 151.9 55.4 631.3

CA-GMRES(15, 30)
1 2×CGS 16 296.3 253.1 49.9 352.5

1 CholQR 16 70.0 45.2 49.8 126.2 2.03
2 CholQR 16 38.4 24.9 30.6 75.0 1.92
3 CholQR 16 25.2 16.3 24.6 56.9 1.76

dielFilterV2real, k-way partitioning
GMRES(180)
1 MGS 176 20964.0 − 3437.5 24420.0

1 CGS 181 3765.2 − 3419.9 7202.8
2 CGS 168 1797.0 − 1732.2 3543.4
3 CGS 199 1223.2 − 1130.7 2366.4

CA-GMRES(1, 180)
1 – 202 9440.6 715.3 3455.0 12921.0

CA-GMRES(15, 180)
1 2×CGS 148 1891.9 1247.3 3386.5 5301.4

1 2×CholQR 181 1047.0 398.6 3391.2 4460.8 1.61
2 2×CholQR 139 431.8 176.8 2129.4 2688.2 1.31
3 2×CholQR 160 369.3 151.2 1989.3 2374.2 0.62

Fig. 14. CA-GMRES performance, where “Rest.” is the number of restarts,
“Ortho/Res” and “SpMV/Res” are the average Orth and SpMV time per
restart-loop, respectively, “Total/Res” is the average restart-loop time, and
“SpdUp” is the speedup over GMRES. BOrth is based on CGS.

B. Performance Studies of CA-GMRES

Finally, Figure 14 compares the CA-GMRES performance
with that of GMRES, both of which use the optimized GPU
kernels from Section V. Though CA-GMRES and GMRES
needed about the same number of restarts on one GPU, for an
ill-conditioned A, the round-off errors could lead to a different
restart counts on a different number of GPUs. Hence, in the
table, we show both the average time per restart and the
restart counts. The first observation is that the CA-GMRES
performance using s = 1 is much lower than that of GMRES.
This is because CA-GMRES relies on computational kernels

to orthogonalize multiple vectors at a time, and these kernels
are not optimized for orthogonalizing one vector at a time.8

For instance, with BOrth based on MGS or CGS, when s = 1,
BOrth computes the dot-product vT:,`v:,k or the matrix-vector
product V Tj+1:j+s+1v:,` using a matrix-vector or matrix-matrix
multiplication routines, respectively. However, as soon as s
becomes larger (e.g., s = 10), the combination of BOrth and
TSQR reduces the communication both on a GPU and between
the GPUs, and shortens the orthogonalization time, obtaining
speedups of between 1.99 and 4.16 over Orth of GMRES.

On the other hand, due to the overheads associated with
MPK (see Section IV), obtaining the speedups in the sparse-
matrix vector product was more challenging. Depending on the
sparsity patterns, MPK could obtain a speedup of up to 1.33
over SpMV, but MPK can be slower. Figure 15 summarizes the
performance of CA-GMRES by showing the time per restart-
loop that is normalized by that of GMRES on one GPU. Here,
if SpMV is faster than MPK, then CA-GMRES uses SpMV. By
reducing the communication, CA-GMRES obtained speedups
of between 1.32 and 2.06 over GMRES.

VII. CONCLUSION

We surveyed the numerical behavior of different orthog-
onalization (Orth) procedures, and of their blocked variants
(BOrth) and tall-skinny QR (TSQR), in combination with a
sparse matrix-vector product (SpMV) and a matrix powers
kernel (MPK). We also showed that new optimizations, espe-
cially for tall skinny matrices, are needed to make Orth, BOrth,
and TSQR, and hence CA-GMRES or GMRES, perform well
on the GPUs. Since many existing GPU implementations of
GMRES rely on standard techniques (e.g., CUBLAS), these
optimizations may improve their performance. In addition,
such tall-skinny matrices appear in other sparse solvers (e.g.,
sparse factorization), and both SpMV and Orth are needed
in many solvers (e.g., subspace projection methods for linear
and eigenvalue problems). Hence, our studies may have greater
impact beyond GMRES. In the end, our performance results on

8We are investigating if an auto-tuner can reduce this performance gap.

cant/1GPU cant/2GPUs cant/3GPUs G3/1GPU G3/2GPUs G3/3GPUs V2/1GPU V2/2GPUs V2/3GPUs KT/1GPU KT/2GPUs KT/3GPUs
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No
rm

ali
ze

d T
im

e

Total

SpMV

Orth

MPK

Bort

TSQR

1.40x

1.32x

1.52x

2.03x

1.92x

1.76x

1.60x

1.54x

1.49x

2.07x

1.94x

1.79x

Fig. 15. Performance of GMRES and CA-GMRES, nlpkkt120 required 746 GMRES(120) iterations and about 90 minutes on one GPU for the solution
convergence. For CA-GMRES, we used s = 10. For the timing results of other matrices, see Figure 14. CA-GMRES bars show the speedups over GMRES.

16-core Intel Sandy Bridge CPUs with three NDIVIA Fermi
GPUs showed that CA-GMRES can obtain a speedup of up
to 2.0 over GMRES.

Since the performance of CA-GMRES depends critically
on the performance of the GPU kernels, we are looking
to further optimize these kernels. We also plan to study
other partitioning algorithms (e.g., hypergraph partitioning),
other orthogonalization strategies (e.g., rank-revealing QR
with column pivoting [10] or the use of a mixed-precision
arithmetic [23]), and adaptive schemes to select or switch
orthogonalization strategies or to adjust input parameters (e.g.,
m and s [23]). Finally, our performance results demonstrated
that though MPK could obtain a speedup of up to 1.3 over
SpMV, it can be slower due to the overheads traded for
reducing the communication latency. We would like to study
the potential of reducing communication of MPK on a single
GPU, and the performance of CA-GMRES on a larger number
of GPUs, in particular, the GPUs distributed over multiple
compute nodes, where the communication is more expensive.

ACKNOWLEDGMENTS

This research was supported in part by NSF SDCI - National
Science Foundation Award #OCI-1032815, “Collaborative Re-
search: SDCI HPC Improvement: Improvement and Support
of Community Based Dense Linear Algebra Software for
Extreme Scale Computational Science,” DOE grant #DE-
SC0010042: “Extreme-scale Algorithms & Solver Resilience
(EASIR),” NSF Keeneland - Georgia Institute of Technol-
ogy Subcontract #RA241-G1 on NSF Prime Grant #OCI-
0910735, and Sandia National Laboratories is a multiprogram
laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for
the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

REFERENCES

[1] Y. Saad, Iterative methods for sparse linear systems, 3rd Edition, the
Society for Industrial and Applied Mathematics, Philadelphia, PA, 2003.

[2] H. van der Vorst, Iterative Krylov methods for large linear systems,
Cambridge University Press, Cambridge, MA, 2003.

[3] Y. Saad, M. Schultz, GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7
(1986) 856–869.

[4] M. Hoemmen, Communication-avoiding Krylov subspace methods,
Ph.D. thesis, University of California, Berkeley (2010).

[5] J. Demmel, L. Grigori, M. Hoemmen, J. Langou, Communication-
optimal parallel and sequential QR and LU factorizations, SIAM Journal
on Scientific Computing 34 (1).

[6] M. Mohiyuddin, M. Hoemmen, J. Demmel, K. Yelick, Minimizing
communication in sparse matrix solvers, in: the proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis (SC), New York, NY, USA, 2009, pp. 36:1–36:12.

[7] I. Yamazaki, K. Wu, A communication-avoiding thick-restart Lanczos
method on a distributed-memory system, in: the proceedings of Euro-Par
Workshops, 2011, pp. 345–354.

[8] M. Anderson, G. Ballard, J. Demmel, K. Keutzer, Communication-
avoiding QR decomposition for GPUs, Tech. Rep. UCB/EECS-2010-
131, University of California Berkeley (Oct 2010).

[9] M. Hoemmen, A communication-avoiding, hybrid-parallel, rank-
revealing orthogonalization method, in: the proceedings of IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS), 2011,
pp. 966–977.

[10] J. Demmel, L. Grigori, M. Gu, H. Xiang, Communication avoiding rank
revealing QR factorization with column pivoting, LAPACK Working
Note 276 (May 2013).

[11] CUSP library, available at https://github.com/cusplibrary.
[12] D. Lukarski, PARALUTION - the library for iterative sparse methods

on CPU and GPU, available online: http://www.paralution.com/ (2013).
[13] P. Tillet, K. Rupp, S. Selberherr, C.-T. Lin, Towards performance-

portable, scalable, and convenient linear algebra, Talk: HotPar (2013).
[14] V. Minden, B. Smith, M. Knepley, Preliminary implementation of PETSc

using GPUs, the proceedings of the 2010 International Workshop of
GPU Solutions to Multiscale Problems in Science and Engineering.

[15] C. G. Baker, M. A. Heroux, Tpetra, and the use of generic programming
in scientific computing, Scientific Programming 20 (2) (2012) 115–128.

[16] NVIDIA CUBLAS library, https://developer.nvidia.com/cublas.
[17] Z. Bai, D. Hu, L. Reichel, A Newton basis GMRES implementation,

IMA Journal of Numerical Analysis 14 (1994) 563–581.
[18] E. Cuthill, J. McKee, Reducing the bandwidth of sparse symmetric

matrices, in: the proceedings of the 24th National Conference, 1969,
pp. 157–172.

[19] P. Ghysels, T. Ashby, K. Meerbergen, W. Vanroose, Hiding global
communication latency in the GMRES algorithm on massively parallel
machines, SIAM J. Scientific Computing 35.

[20] A. Stathopoulos, K. Wu, A block orthogonalization procedure with
constant synchronization requirements, SIAM J. Sci. Comput. 23 (2002)
2165–2182.

[21] A. Bjorck, Solving linear least squares problems by Gram-Schmidt
orthogonalization, BIT Numerical Mathematics 7 (1967) 1–21.

[22] N. Abdelmalek, Round off error analysis for Gram-Schmidt method and
solution of linear least squares problems, BIT Numerical Mathematics
11 (1971) 345–368.

[23] I. Yamazaki, S. Tomov, T. Dong, J. Dongarra, Mixed-precision orthog-
onalization scheme and adaptive step size for CA-GMRES on GPUs,
2014, submitted to the 11th international meeting on high-performance
computing for computational science (VECPAR).

https://github.com/cusplibrary
http://www.paralution.com/
https://developer.nvidia.com/cublas

	Introduction
	Related Work
	Communication-Avoiding GMRES
	Matrix Powers Kernel
	Implementation
	Performance Studies

	Orthogonalization Kernels
	Modified Gram-Schmidt Procedure
	Classical Gram-Schmidt Procedure
	Cholesky QR Factorization
	Singular Value QR Factorization
	Communication-Avoiding QR Factorization
	Performance Studies

	Experimental Results of CA-GMRES
	Numerical Studies of Orthogonalization Procedures
	Performance Studies of CA-GMRES

	Conclusion
	References

