
Performance of computing low-rank matrix approximatoin
on a hybrid CPU/GPU architecture

Ichitaro Yamazaki1, Theo Mary2,

Jakub Kurzak1, Stanimire Tomov1, Jack Dongrra1

1University of Tennessee, Knoxville, USA
2Universite de Toulouse, UPS-IRIT, France

SIAM Conference on Computational Science and Engineering
Salt Lake City, Utah, USA, 03-18-2015

Computing truncated SVDs with GPUs 1/23



Innovative Computing Lab. at EECS of University of Tennessee, Knoxville

HP Linear Algebra (LA) Packages on emerging computers:

I Linear Algebra:

I LAPACK/ScaLAPACK: dense LA on shared/distributed system

I PLASMA/MAGMA: dense LA on manycore/hybrid node (NVIDIA/Intel/AMD)

→ sparse LA on distributed system

I Sparse LA

- Distributed-memory sparse linear/eigen solvers: (SuperLU DIST/TRLan/PDSLin)

- Collaboration to accelerate sparse/application codes (PaStiX, DOD, SciDB, etc.)

I Runtime Systems: QUARK/PULSAR

I Distributed Computing: OpenMPI, ParSEC, DPLASMA, etc.

I Performance Profiling/Modeling: PAPI, etc.

I Bench-marking: HPL, HPCG, etc.

I Auto-tuning: BEAST, etc. (more info at www.icl.utk.edu)

Can we learn from or contribute to randomized algorithms?

Computing truncated SVDs with GPUs 2/23



truncated singular value decompositions (SVD)

Compute k-rank approximation of m-by-n sparse matrix A,

A ≈ UkΣkV
T
k to minimize ‖A− UkΣkV

T
k ‖2,

where

I Uk and Vk are k left/right singular vectors (i.e., UTU = I and V TV = I )

I Σ is diagonal with k largest singular values

I it is used for PCA, clustering, ranking, etc.

I many variants with different constraints (i.e., matrix completition)

Computing truncated SVDs with GPUs 3/23



Outline: Computing truncated SVDs with GPUs

I Performance of random and Lanczos (block, thick-restart, CA)

I Performance of updating SVD
for Latent Semantic Inedexing and population clustering

I Final Remarks

Computing truncated SVDs with GPUs 4/23



Subspace projection framework

1. Generate k + ` orthonormal P and Q approximating ranges of A and AT ,

A ≈ PQT ,

where ` is “oversampling” to improve performance/robustness.

2. Compute SVD of the projected matrix B,

B = X Σ̂Y T ,

where B = PTAQ.

3. Compute approximation,
A ≈ ÛkΣ̂k V̂

T
k ,

where Ûk = PXk and V̂k = QYk .

Computing truncated SVDs with GPUs 5/23



“Randomization” framework: normalized block power iteration

Input Q: “random” sampling/projection
do

2. SpMM + Ortho

P̂ = AQ, and

PRp = TSQR(P̂)
3. Restart (if not done)

Q̂ = ATP, and

QRq = TSQR(Q̂)
while

I iteration to improve approximation when singular values decay slowly.

I “normalized” to maintain stability.

I “randomization” only in starting vectors (e.g., Gaussian random vectors).

Computing truncated SVDs with GPUs 6/23



“Traditional” algorithm: block Lanczos method

1. Initial + Ortho
q̂1 = randn(n, b), and q1b0,1 = orth(q̂)

do

2. SpMM + Ortho to generate Q = K(AAT , q1) and P = K(AAT ,Aq1)

for j = 1, 2, . . . , s do

p̂j = Aqj , and
pjbj,j = orth([pj−1, p̂j ])

q̂j+1 = ATpj , and
qj+1bj,j+1 = orth([qj , q̂j+1])

end for

3. Restart (if not done)

“recycle” a few current approximation

while

I we use “thick” restart to “recyle” current approximation
to improve convergence and reduce cost of generating P and Q

I Krylov often converges faster, but with more passes over A
splitting big SpMM into smaller blocks

Computing truncated SVDs with GPUs 7/23



s-step Block Lanczos Method

1. Initial + Ortho
q̂1 = random(n, b) and q1b0,1 = orth(q̂)

do

2. MPK
for j = 1, 2, . . . , s do

p̂j = Aq̂j then
q̂j+1 = AT p̂j

end for

3. Ortho

QRq = TSQR(Q̂) and

PRp = TSQR(P̂)
4. Restart (if not done)

q1 = qc+1 (explicit restart)

while

I groups s SpMM/Orthos into one

I “Communication-avoiding” implementation:
- s block basis vectors with comm cost of one
- potentially same/less comm than power method
- overhead to perform comm/comp/store boundary elements

Computing truncated SVDs with GPUs 8/23



Experimental Setups

Name Source m n nnz
m σ1

BerkStan snap.stanford.edu 685, 230 685, 230 11.1 6.7× 102

Netflix netflixprize.com 2, 649, 429 17, 770 37.9 1.9× 104

I One node (two 6-core Intel Xeon) with multiple GPUs (three NDIVIA M2090)

I Compute 50 and 30 largest singular values/vectors for BerkStan and Netflix

(i.e., nd = 50 and 30)

I Projection subspace dimension is 2× nd
- Power and explicit-restart Lanczos have same computational cost

I Block size is 10 (i.e., b = 10)

I Thick-restart Lanczos recycles nd + 2b Ritz vectors
- Lanczos has less computation per restart
- s = 2 for s-step Lanczos

I Orthogonalization schemes: CGS and CholQR with reorthogonalization

I Max. residual norm ‖Aui − σivi‖2 for stopping criteria

Computing truncated SVDs with GPUs 9/23

snap.stanford.edu
netflixprize.com


Computed/true residual norms vs. restart

0 5 10 15 20 25 30 35 40 45 50 55 60
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Number of Restarts

R
e
s
id

u
a
l 
N

o
rm

s

 

 

Power (computed)

Power (true)

Lanczos (computed)

Lanczos (true)

CA−Lanczos(computed)

CA−Lanczos(true)

0 10 20 30 40 50 60 70
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

Number of Restarts

R
e
s
id

u
a
l 
N

o
rm

s

 

 

Power (computed)

Power (true)

Lanczos (computed)

Lanczos (true)

CA−Lanczos(computed)

CA−Lanczos(true)

I Lanczos converges faster than Power method (in term of restart count)

I CA-Lanczos’ convergence matches with Lanczos (in term of computed residual norm)

I true residual norm diverges from computed one (working to fix this)

Computing truncated SVDs with GPUs 10/23



Iteration time breakdown

Power s−Lanczos Lanczos
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
im

e
 p

e
r 

R
e

s
ta

rt
 C

y
c
le

 (
s
)

BerkStan

 

 

Other

Ortho

SpMM

Init

Restart

Power s−Lanczos Lanczos
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

T
im

e
 p

e
r 

R
e

s
ta

rt
 C

y
c
le

 (
s
)

Netflix

 

 

Other

Ortho

SpMM

Init

Restart

I SpMM time per Lanczos cycle was shorter due to thick-restarting

I Ortho time per Lanczos cycle was longer due to lower-perf. of dense kernels

I SpMM time increase in s-step Lanczos due to overhead of MPK

I each restart cycle (i.e., O(100) SpMMs+Orths) requires < 2 seconds on GPUs

Computing truncated SVDs with GPUs 11/23



Computed/true residual norms vs. time

0 5 10 15 20 25 30 35
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Time (s)

R
e
s
id

u
a
l 
N

o
rm

s

BerkStan

 

 

Power (computed)

Power (true)

Lanczos (computed)

Lanczos (true)

CA−Lanczos(computed)

CA−Lanczos(true)

0 20 40 60 80 100 120
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

Time (s)

R
e
s
id

u
a
l 
N

o
rm

s

Netflix

 

 

Power (computed)

Power (true)

Lanczos (computed)

Lanczos (true)

CA−Lanczos(computed)

CA−Lanczos(true)

I CA-Lanczos and Lanczos were fastest to converge for BerkStan and Netflix,
respectively (in term of time, if solution requires a few iterations)

I For Netflix, Lanczos was competitve even after 1st restart

- a few smaller SpMMs were as fast as a big SpMM

I CA-Lanczos was slower than Lanczos for Netflix due to irregular sparsity

Computing truncated SVDs with GPUs 12/23



Several un-answered question

I how does it perform at larger-scale?

I how do I measure quality of approximation?

I is there any case where the matrix can be partitioned well?

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

Edge Degree

N
u
m

b
e
r 

o
f 
v
e
rt

ic
e
s

Column(or Movie)−wise (Num. rows = 2,649,429, Num. non−empty rows=480,189)

Computing truncated SVDs with GPUs 13/23



Outline: Computing truncated SVDs with GPUs

I Performance of randomized with Lanczos (block, thick-restart, CA)

I Performance of sampling to update SVD on a GPU cluster
for LSI and populartion clustering

I Final Remarks

Computing truncated SVDs with GPUs 14/23



Adding “document” problem

Given a rank-k approximation of A ≈ UkΣkV
T
k , we compute

[A,D] ≈ ÛkΣ̂k V̂
T
k ,

where D is m-by-d .

I D may be big (e.g., d = O(103)), but

I is still much smaller than A (i.e., d � m)

I two other updating problems exist (term-update and weight-correction)

Computing truncated SVDs with GPUs 15/23



“Fold-in” algorithm by Zha and Simon, 99

1. Orthogonalize D against Uk ,

D̂ := D − Uk (UT
k D) and P̂R = TSQR(D̂).

2. Compute SVD of the projected matrix B = PTAQ, where

P = [Uk , P̂] and Q =

(
Vk 0
0 I

)
Hence,

B =

(
Σk UT

k D
R

)
.

3. Compute approximation,
A ≈ Ûk Σ̂k V̂

T
k ,

where Ûk = PXk and V̂k = QYk .

I if d is large, infeasibly large memory to store P̂.

I incremental update reduces cost, but still ortho(D) and SVD(B) could be
expensive (may lower accuracy, and may be slower).

Computing truncated SVDs with GPUs 16/23



“Lanczos” algorithm by Vecharynski and Saad, 14

1. Run column-wise Lanczos on (I − UkU
T
k )D to generate ` basis vectors P̂`

and Q̂`

2. Compute SVD of the projected matrix B = PTAQ, where

Pk+` = [Uk , P̂`] and Qk+d =

(
Vk 0
0 Id

)
Hence,

B =

(
Σk UT

k D

P̂T
` D

)
.

3. Compute approximation,
A ≈ ÛkΣ̂k V̂

T
k ,

where Ûk = Pk+`Xk and V̂k = Qk+`Yk .

Computing truncated SVDs with GPUs 17/23



Our “Sampling” algorithms for updating SVD

To reduce cost of generating P and Q, run block power iteration,

1. on [UkΣkV
T
k ,D] which generates Pk+` and Qk+`

2. on (I − UUT )D which generates P̂` and Q̂`,

and then let Pk+` = [Uk , P̂`] and

2.1 Qk+d =

(
Vk 0
0 Id

)
[Vecharynski and Saad, 14],

or

2.2 Qk+` =

(
Vk 0

0 Q̂`

)
.

Computing truncated SVDs with GPUs 18/23



Precision for 5735-by-1033 MEDLINE matrix with 30 queries (s = 50)

532 582 632 682 732 782 832 882 932 982 1032
0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

Number of documents

A
v
e

ra
g

e
 p

re
c
is

io
n

 

 

Sample([A
k
 D], 2) → (Q,P)

Sample((I−UU
T
)D, 2) → ([U,Q],dig(V,I))

Sample((I−UU
T
)D, 2) → ([U,Q],dig(V,P))

532 582 632 682 732 782 832 882 932 982 1032
0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

Number of documents

A
v
e

ra
g

e
 p

re
c
is

io
n

 

 

Recompute

Update

Update−inc

Sample

I Sampling performs two iterations (three SpMMs)

I All obtained similar precision.

I CholQR/SVQR for sampling/updating with reorthogonalization

Computing truncated SVDs with GPUs 19/23



Updating to cluster population by SNP

JPT+MEX + ASW + GIH +CHU

recompute 1.00 1.00 1.00 0.97
no update 1.00 0.81 0.84 0.67
update 1.00 1.00 0.89 0.70
sample 1.00 0.95 0.92 0.86

– average crrelation coefficient of clusters –

I compute rank-5 approximation of JPT and MEX with 116,565 SNP
(86 Japanese in Tokyo and 77 Mexican ancestry in LA)

I add ASW, GIH, and CHU (83 African ancestry in SW USA, 88 Gujarati Indian in

Houston, and European ancestry in Utah)

I sample with two iterations (three SpMMs).

Computing truncated SVDs with GPUs 20/23



Netflix matrix for performance study

Incremental update Sampling

1 The World Is Not Enough Mission to Mars
2 Mrs. Doubtfire The World Is Not Enough
3 Mission: Impossible Armageddon
4 Die Another Day Crimson Tide
5 The 6th Day Mission: Impossible
6 Mission to Mars Die Another Day
7 The Mummy Entrapment
8 Die Hard 2: Die Harder Patriot Games
9 Charlie’s Angels Die Hard 2: Die Harder

10 The Santa Clause Men of Honor
– Query results for “Tomorrow Never Dies” –

I given rank-30 approximation of 5, 000 movies, add 5, 000 more.

Computing truncated SVDs with GPUs 21/23



Time-breakdown and Parallel scaling

Update Sample Update Sample Update Sample
0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
 (

s
)

 

 

SVD

MPI

SpMM

MPI

GEMM

TSQR

10.2x, 12 GPUs

12.2x, 3 GPUs 4.1x, 48 GPUs

I Sampling is fast (3MPIs, 1GPU/MPI), but

I spends more time in SpMM (i.e., accesses D twice per iteration).

Computing truncated SVDs with GPUs 22/23



Final Remarks

I Starting effort on linear algebra + randomization package

- combining linear algebra, randomization, and HPC efforts

- RBT is integrated in our package for solving dense linear systems

Curent work

I HPC implementation (e.g., matrix partitioning, simple/special of MPK by Knight,

Carson, Demmel)

I Other randomization/sampling techniques (e.g., compare/combine with

PCA-correlated SNP)

I Larger “sparse” data sets with suggestions on parameter selection

(still losts of parameters to tune)

Thank You!!
Computing truncated SVDs with GPUs 23/23


