a Blocked Aasen’s Algorithm with

a Dynamic Schedular on Multicore Architectures

, Dulceneia Becker, , Jack Dongarra,
Alex Druinsky, Inon Peled, , Sivan Toledo, Ichitaro Yamazaki

University of Tennessee, Knoxville, USA
Tel-Aviv University, Israel

International Parallel & Distributed Processing Symposium (IPDPS)
Boston, Massachusetts, 05/23/2013

Implementing Blocked Aasen’s on Multicore 1/25

Communication-avoiding, direct linear algebra

» gaps between arithmetic and communication costs is increasing

time

Tlop < bandwidth < latency

— computation-bound algorithm on a current machine could become
communication-bound on a next machine.

» reduce runtime (or energy) by avoiding communication.
- new algorithm with new numerical properties and bounds.

*»
-

t
"B

Implementing Blocked Aasen’s on Multicore 2/25

: tiled-algorithm with DAG based dynamic scheduler

> . consists of tasks on tiles
- = block stored in contiguous memory

- fine-grained parallelism and cache friendly.

> : QUeing And Runtime for Kernels

- run a “sequential” code in parallel on a multicore

- schedule task as soon as all dependencies are satisfied
— synchronization avoiding W W/V m

Cholesky factorization with QUARK
for (k = 0; k | Amt; k++) {
QUARK _dpotrf(A(k, k)) (factor diagonal)
for (m = k+1; m < A.mt; m—++) (compute off-diagonal)
QUARK_ dtrsm(A(k, k), A(m, k)); " (o

for (m = k+1; m < A.mt; m++) { (update trailing submatrix) 1 T p—
QUARK _dsyrk(A(m, k), A(m, m));

for (n = k+1; n < m; n++) * P -
v @ o @
.

QUARK_dgemm(A(m, k), A(n, k), A(m, n));

, ¥ PR
Specifying dependencies with QUARK ! TN
void QUARK _dtrsm(double *L, double *B) { (compute B := L~ 1B) <
QUARK _Insert_Task()
sizeof(double)*nb*nb, L, INPUT, Y
sizeof(double)*nb*nb, B, INOUT); i POTRE
}

Implementing Blocked Aasen’s on Multicore 3/25

Problem description: direct linear algebra
> setup: given a matrix A that is

dense (a; #0), symmetric (A= A"), and indefinite (x*Ax > 0 > y*Ay).

> objective: compute a permutation P for a “stable” factorization of A,

PAPT = IBLT,

A AN

where L is unit-lower triangular and B is banded (on a shared-memory machine).

» motivation: used for solving
Ax = b.
> needed in many scientific and engineering simulations:

- discretized Maxwell equations with BEM, optimization problems for structural, acoustics, or
electromagnetic physics, augmented linear least-squares problem, and etc. etc..

Blocked Aasen’s on Multicore 4/

pivoting strategies for stable factorization of a dense symmetric indefinite matrix

backward
Year factorization (authors) flops, - compare stable $misses algorithm /implementation
3
1970 e’ (Parlett-Reid) 2 O(nz) conditional O(%) column-wise, right-look
1971 o™ (Bunch-Parlett) 1 O(n3) stable O(%) column-wise, right-look
1971 T (Aasen) v 1 O(nz) conditional O(%) column-wise, left-look PR
3
1977 o™ (Bunch-Kaufman) v~ 1 O(nz) conditional O(#/n) left-look panel, right-look
submatririx-update,
3
1998 T (Ashcraft-Grimes-Lewis) 1 O(n3) stable O(%) fast BP
1998 o™ (Ashcraft-Grimes-Lewis) 1 O(n3) stable O(%) stable BK (Rook pivot)
3
2010 A/ (Rozloznik-Shklarski-ST) 1+ i O(nz) conditional o(Bl\,;l/n) PR on panel, Aasen to update
3
2012 LBLT (AD,IP,ST,GB,JDem,0S) v/ 1 o(n?) conditional O() blocked Aasen
2012 RBT (Baboulin,DB,JDon) v* 1 0 probablistic O(\;ﬁ) right-look, tiled

Difficult to develop an efficient/scalable implementation that both

» takes advantage of symmetry and

» guarantees numerical stability through pivoting.

plementing Blocked Aasen’s on Multicore

Outline:

1. algorithms

» Bunch-Kaufman

> blocked Aasen

2. tiled implementation with a dynamic scheduler

3. performance and numerical results

4. final remarks

Implementing Blocked Aasen’s on Multicore 6/25

LAPACK: partitioned factorization

right-looking update () left-looking update ()

2. Panel
Factorization

1. Panel
Factorization

- high parallelism - limited parallelism
- poor locality for write - good locality for write

Implementing Blocked Aasen’s on Multicore 7/25

LAPACK: Bunch-Kaufman algorithm to pick j-th pivot

accept pivot a; ; if large enough

1. i :=argmax{|aj., j|}, v = laj jl compared with aj j= MaX,j ar j
2. if v 770thben (aj:n,; = 0)
3 break (nothing to do)
4. else if |a; j| > a; then
5. pivot a; ; a‘i
6. else
7 k= argmax{lan i} v =
8 if 3] > a;(v/)
9. pivot aj ;
10. else if |a; ;| > ary; then
11. pivot a; ;
12. else aj
13 pivot (i i)
ajj A
14. end if
13.end if

look for a large diagonal relative to its off-diagonals.

Implementing Blocked Aasen’s on Multi

LAPACK: Bunch-Kaufman algorithm to pick j-th pivot

accept pivot a; ; if large enough
. 0= argmax{|aj., |}, v = |aj Compafed with Ak,i= MaXr4j r+£i dr i
. if Vj
break (nothing to do)
. else if |a; j| > a; then

1

2 == 0 then (a;,, ; = 0)
3

4

5. pivot a;
6

7

8

5]

. else

k= argmax{|aj.5 |}, vi = |ax,il

it [a;;1 > av(vi/7)
9. pivot aj ;
10. else if |a; ;| > avyj then
11. pivot a; ; AN
12. else aj Qii
13 pivot (i i)

ajj aj a.

14. end if ki
13.end if

look for a large diagonal relative to its off-diagonals.

Implementing Blocked Aasen’s on Multi

LAPACK: Bunch-Kaufman algorithm to pick j-th pivot

form if both
1 i = argmax{lajn I}, vj = laij aj j and a; ; were too small
2. if 7; == 0 then (aj., ; = 0)
3 break (nothing to do)
4. else if |a; j| > a; then
5. pivot aj j a;
6. else
7 k= argmax{lan i} v =
8 if |aj j| > avj(vj/r
9. pivot aj ;
10. else if |a; ;| > ary; then
11. pivot a; ;
12. &ii
13
14. end if
13.end if

look for a large diagonal relative to its off-diagonals.

- compute PAPT = LDLT, where

> Dis block-diagonal with 1-by-1 or 2-by-2
diagonal blocks.

- is normwise backward stable (conditionally).

Implementing Blocked Aasen’s on Multicore 10/25

LAPACK: Bunch-Kaufman algorithm (implementational challenges)

1. pivot selection

P> two reduction operations
2nd column unknown till run-time and

anywhere in trailing submatrix.

» additional run-time dependency

— global synchronization with a dynamic scheduler.

» symmetric storage

— irregular (additional) dependency/memory access.

2. symmetric swap (both columns and rows swapped)

» two columns of length n are swapped
<> only triangular part is stored and updated \

P> symmetric storage
- irregular memory access
- row and col dependencies (swapped at once).

difficult to develop a scalable implementation
fork-join paradigm of LAPACK — panel becomes bottleneck.

Implementing Blocked Aasen’s on Multicore 11/25

column-wise Aasen’s algorithm:
Aasen’s idea: reduction to tridiagonal T,
PAPT = LTLT = LH.
using auxiriary Hessenberg matrix H = TLT and left-looking algorithm.
For each j-th column of A,

1. compute j-th column h; of H (three-term)
hij = tii1€] g+ il + tia g fori=1,2,...).

T
-n H tstond... jh T L

a

<

j—1
o T o T _ .)
Gt ity = ajj — 4t 14 j 1 E £ ichi.j
k=1

Implementing Blocked Aasen’s on Multicore 12/25

column-wise Aasen’s algorithm:

Aasen’s idea: reduction to tridiagonal T, using auxiriary Hessenberg matrix H = TLT
and left-looking algorithm;
PAPT = LTLT = LH.

For each j-th column of A,

2. compute next column €, of L and hjy; ; (updatetfactor, just like LU)

L1y jr1hi+1j = A¢1)n, Z%H SWLNE
k=1

- for numerical stablity, picks largest element as a pivot!!

L jn H A

Implementing Blocked Aasen’s on Multicore 13/25

column-wise Aasen’s algorithm:

For each j-th column of A,
3. symmetrically pivot both rows and columns of A; 1.5 j41:n (and rows of Lj 1.5 1;).

-7
4. extract tj 1 ; from hj 1 (41 = 41,4)-

Left-looking Aasen’s algorithm:
Advantages:
— guarantees stability through a simple pivoting (just like LU).

— updates only aj 1., ;, performing total of %n3 flops
(same as Bunch-Kauffman, and half of the right-looking version, Parlett-Reid).

— exhibits limited parallelism (only one column aj is updated at each step).

— introduces a dependency (all the pivots must be applied to a; before updating it).

Implementing Blocked Aasen’s on Multicore 14/25

blocked Aasen’s algorithm:

Replace element-wise operations with block-wise operations: T is now banded.

1. compute the j-th block column H; (three-term)
for stable factorization, symmetry of T; ; must be maintained through symmetric solve

2. compute the (j + 1)-th column L;;; (panel factorization, tall-skiny LU)

Liaym jriHi+1,j = (Agiiya, Z Lij1y:n,k Hi j)P(/+1)

,.1 mmHm,, Ajimi Lptmiy Hprm,

— depends only on panel, and can use any “communication-avoiding” LU.

3. pivot Ljt1:,1;j and Aji1:p j11:n (Symmetric pivoting)

T
4. extract Tjyy ; from Hiyq j (Tj1,; = H; l.ij_/)

Blocked Aasen’s on Multicore

Comparing blocked Aasen's and Bunch-Kaufman algorithms

backward
algorithm (factorization) flops stable $misses algorithm /implementation
3
Bunch-Kaufman (LDLT) 1n® + 0(n?) conditional O(i) right-look, column-wise panel
T 1.3 2 . 3
blocked Aasen (LBL zn° 4+ O(n“n conditional o(=— left-look, TSLU panel
() 3 (n"np) (5277 P

about the same number of flops but with less “communication”

— implemented in (synchronization-avoiding)

Blocked Aasen’s on Multicore 16/25

LU factorizations in PLASMA:

16 core Intel SandyBridge

B A —
2600 2 = 3 > several LU algorithms are available
o a . . .
2401 = - recursive partial, tournament, incremental,
2201 random-butterfly, no-pivoting
200 A survery of recent parallel Gaussian elimination
1801 Donfack, JDon, Faverge, Gates, Kurzak, Luszek, Y.
g_ 160+
(:‘; 140F - reank-revealing pivoting
120 LU factorization with panel rank reveling pivoting
—8—-mkl -
1001 A A no—pivoting Khabou, JDem, Grigori, Gu
80r —o—incremental ||
60l —&— partial
—6—tournament
408 rank-revealing|
201 —>—RBT H

2K 4K 6K 8K 10K 14K 18K 22K 26K 30K
Matrix dimension (n=m)

plementing Blocked Aasen’s on Multicore 17/

Improving performance of blocked Aasen’s:

Initial performance was not ideal:

100) -

5000, ny,

n=

(

- EzTrace on 24 core AMD Opteron

—
o0
£
=
o
K]
&
2
(2]
c
.2
=
0
3
o
0
g
192}
£
L
T
9]
o
o
0
et
n
<
w
"~

j—1

J

<y Nt

fori=j,j+1,..

ikhi

e

ajj = aij

1

18/25

Implementing Blocked Aasen’s on Multicore

Initial performance of blocked Aasen’s:

use workspaces to perform binary-reduction:

wip =

14ikhi,j

w =30
we =,

p1 Li kP,

2h
k

» breaks a reduction operation into independent tasks

> starts accumulating updates before destination block a; ; is ready

a few other techniques (e.g., symmetric pivoting) described in the paper.

19/25

Implementing Blocked Aasen’s on Multicore

Current performance of blocked Aasen’s:

strong-scaling on eight 6-core 2.8MHz AMD Opteron (n=45K).

250

—&—RBT
—6—Aasen-recLU
-¢-Aasen-CALU
2007 recursive LU

——MKL

150 SEPSE

effective Gflop/s

501

24 48
Number of threads

» On 6 and 48 cores, blocked Aasen with recursive-panel obtains
- about 83% and 73% of RBT Gflop/s
- speedups of about 1.6 and 1.4 over recursive LU.

» Block Aasen with tournament pivoting was slightly slower
- difficult to overlap with left-looking update

Implementing Blocked Aasen’s on Multicore 20/25

Current performance of blocked Aasen’s:

blocked Aasen’s computes PAPT = LTLT, where T is banded.

0.14 T T T T T
—©-48 threads
—8-12 threads
0.12¢ 3 threads ||

0.1

0.08;

0.06

0.04

Solution time / Factorization time

0.02
1]

18000 15000 20000 25000 30000 35000 40000
Matrix size, n

» Solution time does not scale as well as factorization time
- about 80 — 90% of solution time spent in banded solver GBSV of LAPACK

Blocked Aasen’s on Multicore 21/25

Numerical behavior of blocked Aasen’s with partial pivoting LU:

Random matrix

10710 L
_8
o
J
2
= 10"t
13
=}
e
©
=3
b}
@
<
1072 ;/ -~ Aasen(nb=200) H
) Aasen(nb=1 00)
¥
= Aasen(nb=50)

200 400 600 800 1000 1200 1400 1600 1800 2000
Matrix dimension

» Residual norms increase slightly (proportinally) with the block size.

- seems to be due to the growth in max,-yj(\LHTHL|T),-J.

Implementing Blocked Aasen’s on Multicore 22/25

Relative residual norm

Numerical behavior of blocked Aasen’s with partial pivoting LU:

Random matrix RIS matrix
10° . . : r . 10°
-8-RBT —o-Aasen(n =10)
-g-Aasen(n=10) ——Aasen(n,=50)
10' 0 ——Aasen(n,=50) 10" b _A-Aasen(n =100)
_A_Aasen(nb=100) c Aasen(nb=200)
. Aasen(nb=200) s , S LAPACK
10" = LAPACK E 107
% S A A N
~ n o, 7‘0— ———
107k g 10]
=
A\A\A\A\‘ 2
10”
10’3 L L L L L L L 10’3 L L L L L L L
1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1500 2000 2500 3000 3500 4000 4500 5000

Matrix dimension Matrix dimension
relative residual norm = ||b — Ax||/(nel|b|| + ||AlllIx]])

> blocked Aasen obtained quite stable/robust performance
- lost a couple of digits compared to LAPACK (proportional to block size)

- was able to factorize “hard” matrix, where RBT failed

» iterative refinements would lower the residual norms of RBT

(if the factorization is succesful).

Implementing Blocked Aasen’s on Multi

re 23/25

Numerical behavior of blocked Aasen’s with tournament pivoting LU:

Random matrix RIS matrix
10* 10°
-8-RBT —o-Aasen(n =10)
-o-Aasen(n,=10) ——Aasen(n,=50)
——Aasen(n,=50) A Aasen(n,=100)
£ 10° _A_:asen(nb=1zgg) £ 10°4 Aasen(n,=200)
g asen(n;=200) g —*—LAPACK
g g -~ LAPACK E}
e} hel
g ¢
0 10° o 10°F
> >
£ - R D =
o} 1 [} - -t
o< - i
R — Y S S — K
4 R 5
10™ ‘—1\0—0%_0. 10*2!_‘___)‘\’(_—;
1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1500 2000 2500 3000 3500 4000 4500 5000
Matrix dimension Matrix dimension

relative residual norm = ||b — Ax|| /(nel|b|| + ||A|l|x]])
» for some matrices, blocked Aasen became unstable with tournament pivoting

- is due to low-rank/singular off-diagonal blocks (CALU panel lead to large growth-factor)
- may be fixed using rank-revealing pivoting

Implementing Blocked Aasen’s on Multi

Summary:
» blocked Aasen with a potential of being scalable and numerically stable.

P nice joint research between applied math and computer science
- looking for applications.

dynamic scheduler QUARK to speedup an efficient implementation/prototyping.

Current studies:
» other pivoting strategies (e.g., rank-revealing) for panel factorization.
» more performance profiling (e.g., “communication” or “energy” costs).

P larger-scale experiments (distributed-memory system with PaRSEC or QUARKA).

- more scalable banded solver.

» more theoretial (stablity, etc.) understanding.

Thank you.

Implementing Blocked Aasen’s on Multicore 25/25

