# **Implementing** a Blocked Aasen's Algorithm with a Dynamic Schedular on Multicore Architectures

Grey Ballard, Dulceneia Becker, James Demmel, Jack Dongarra, Alex Druinsky, Inon Peled, Oded Schwartz, Sivan Toledo, Ichitaro Yamazaki

> University of Tennessee, Knoxville, USA Tel-Aviv University, Israel University of California, Berkeley, USA

International Parallel & Distributed Processing Symposium (IPDPS) Boston, Massachusetts, 05/23/2013

- A 同 ト - A 三 ト - A 三 ト

## Communication-avoiding, direct linear algebra

- ► gaps between arithmetic and communication costs is increasing  $\frac{\text{time}}{\text{flop}} \ll \frac{1}{\text{bandwidth}} \ll \text{latency}$ 
  - $\rightarrow$  computation-bound algorithm on a current machine could become communication-bound on a next machine.
- reduce runtime (or energy) by avoiding communication.
  - new algorithm with new numerical properties and bounds.



◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

## PLASMA: tiled-algorithm with DAG based dynamic scheduler

- tiled algorithm: consists of tasks on tiles
  - tile = block stored in contiguous memory
  - fine-grained parallelism and cache friendly.
- QUARK: QUeing And Runtime for Kernels
  - run a "sequential" code in parallel on a multicore
  - schedule task as soon as all dependencies are satisfied
    - $\rightarrow$  synchronization avoiding



#### 

#### Specifying dependencies with QUARK

```
void QUARK_dtrsm(double *L, double *B) { (compute B := L<sup>-1</sup>B)
QUARK_Insert_Task(
    sizeof(double)*nb*nb, L, INPUT,
    sizeof(double)*nb*nb, B, INOUT );
}
```



3/25

Problem description: direct linear algebra

setup: given a matrix A that is

dense  $(a_{ij} \neq 0)$ , symmetric  $(A = A^T)$ , and indefinite  $(x^*Ax > 0 > y^*Ay)$ .

objective: compute a permutation P for a "stable" factorization of A,

 $PAP^T = LBL^T$ ,



where L is unit-lower triangular and B is banded (on a shared-memory machine).

motivation: used for solving

$$Ax = b.$$

needed in many scientific and engineering simulations:

- discretized Maxwell equations with BEM, optimization problems for structural, acoustics, or electromagnetic physics, augmented linear least-squares problem, and etc. etc..

・ロト ・回ト ・ヨト ・ヨト

### pivoting strategies for stable factorization of a dense symmetric indefinite matrix

|      |                                            |                        |          | backward     |                            |                                                           |
|------|--------------------------------------------|------------------------|----------|--------------|----------------------------|-----------------------------------------------------------|
| Year | factorization (authors)                    | flops, $\frac{n^3}{3}$ | compare  | stable       | \$misses                   | algorithm/implementation                                  |
| 1970 | $LTL^T$ (Parlett-Reid)                     | 2                      | $O(n^2)$ | conditional  | $O(\frac{n^3}{B})$         | column-wise, right-look                                   |
| 1971 | $LDL^T$ (Bunch-Parlett)                    | 1                      | $O(n^3)$ | stable       | $O(\frac{n^3}{B})$         | column-wise, right-look                                   |
| 1971 | LTL <sup>T</sup> (Aasen) ✓                 | 1                      | $O(n^2)$ | conditional  | $O(\frac{n^3}{B})$         | column-wise, left-look PR                                 |
| 1977 | $\textit{LDL}^T$ (Bunch-Kaufman) 🗸         | 1                      | $O(n^2)$ | conditional  | $O(\frac{n^3}{BM/n})$      | left-look panel, right-look<br>submatririx-update, LAPACK |
| 1998 | $LTL^T$ (Ashcraft-Grimes-Lewis)            | 1                      | $O(n^3)$ | stable       | $O(\frac{n^3}{B})$         | fast BP                                                   |
| 1998 | $LDL^T$ (Ashcraft-Grimes-Lewis)            | 1                      | $O(n^3)$ | stable       | $O(\frac{n^3}{B})$         | stable BK (Rook pivot)<br>LAPACK                          |
| 2010 | $LTL^T$ (Rozloznik-Shklarski-ST)           | $1 + \frac{1}{n_b}$    | $O(n^2)$ | conditional  | $O(\frac{n^3}{BM/n})$      | PR on panel, Aasen to update                              |
| 2012 | $LBL^T$ (AD,IP,ST,GB,JDem,OS) $\checkmark$ | 1                      | $O(n^2)$ | conditional  | $O(\frac{n^3}{B\sqrt{M}})$ | blocked Aasen                                             |
| 2012 | RBT (Baboulin,DB,JDon) 🗸                   | 1                      | 0        | probablistic | $O(\frac{n^3}{\sqrt{M}})$  | right-look, tiled                                         |

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Difficult to develop an efficient/scalable implementation that both

- takes advantage of symmetry and
- guarantees numerical stability through pivoting.

## Outline:

- 1. algorithms
  - Bunch-Kaufman (LAPACK)
  - blocked Aasen
- 2. tiled implementation with a dynamic scheduler (QUARK/PLASMA)

- 3. performance and numerical results
- 4. final remarks

## LAPACK: partitioned factorization



- high parallelism
- poor locality for write

left-looking update (PLASMA blocked Aasen)



- limited parallelism

- good locality for write

## LAPACK: Bunch-Kaufman algorithm to pick *j*-th pivot

1.  $i := \operatorname{argmax}\{|\mathbf{a}_{j:n,j}|\}, \gamma_j = |a_{i,j}|$ 2. if  $\gamma_j := 0$  then  $(a_{j:n,j} = 0)$ 3. break (nothing to do) 4. else if  $|a_{j,j}| \ge \alpha \gamma_j$  then 5. pivot  $a_{j,j}$ 6. else 7.  $k := \operatorname{argmax}\{|\mathbf{a}_{j:n,i}|\}, \gamma_i = |a_{k,i}|$ 8. if  $|a_{j,j}| \ge \alpha \gamma_i (\gamma_j / \gamma_i)$ 9. pivot  $a_{j,j}$ 10. else if  $|a_{i,i}| \ge \alpha \gamma_i$  then 11. pivot  $a_{i,i}$ 12. else 13 pivot  $\begin{pmatrix} a_{j,j} & a_{j,i} \\ a_{i,j} & a_{i,i} \end{pmatrix}$ 14. end if

look for a large diagonal relative to its off-diagonals.

accept pivot  $a_{j,j}$  if large enough compared with  $a_{i,j} = \max_{r \neq j} a_{r,j}$ 



イロン イヨン イヨン イヨン

## LAPACK: Bunch-Kaufman algorithm to pick *j*-th pivot

```
1. i := \operatorname{argmax}\{|a_{j:n,j}|\}, \gamma_j = |a_{i,j}|

2. if \gamma_j := 0 then (a_{j:n,j} = 0)

3. break (nothing to do)

4. else if |a_{j,j}| \ge \alpha \gamma_j then

5. pivot a_{j,j}

6. else

7. k := \operatorname{argmax}\{|a_{j:n,i}|\}, \gamma_i = |a_{k,i}|

8. if |a_{j,j}| \ge \alpha \gamma_i (\gamma_j / \gamma_r)

9. pivot a_{j,j}

10. else if |a_{i,i}| \ge \alpha \gamma_i then

11. pivot a_{i,i}

12. else

13 pivot \begin{pmatrix} a_{j,j} & a_{j,i} \\ a_{i,j} & a_{i,i} \end{pmatrix}

14. end if
```

look for a large diagonal relative to its off-diagonals.

accept pivot  $a_{i,i}$  if large enough compared with  $a_{k,i} = \max_{r \neq j, r \neq i} a_{r,i}$ 



イロン イヨン イヨン イヨン

## LAPACK: Bunch-Kaufman algorithm to pick *j*-th pivot

**1.**  $i := \operatorname{argmax}\{|\mathbf{a}_{i:n,j}|\}, \gamma_i = |a_{i,j}|$ 2. if  $\gamma_i == 0$  then  $(a_{i:n,i} = 0)$ break (nothing to do) **4**. else if  $|a_{i,i}| \geq \alpha \gamma_i$  then 5. pivot ai i 6. else 7.  $k := \operatorname{argmax}\{|\mathbf{a}_{i:n,i}|\}, \gamma_i = |a_{k,i}|$ 8. if  $|a_{j,j}| \ge \alpha \gamma_j (\gamma_j / \gamma_r)$  pivot a<sub>j,j</sub> 10. else if  $|a_{i,i}| \ge \alpha \gamma_i$  then 11. pivot ai.i 12 else pivot  $\begin{pmatrix} a_{j,j} & a_{j,i} \\ a_{i,j} & a_{i,i} \end{pmatrix}$ 13 14. end if 13.end if

look for a large diagonal relative to its off-diagonals.

form 2-by-2 pivot if both  $a_{j,j}$  and  $a_{i,i}$  were too small



- compute  $PAP^T = LDL^T$ , where
  - D is block-diagonal with 1-by-1 or 2-by-2 diagonal blocks.
- is normwise backward stable (conditionally).

イロン イヨン イヨン イヨン

3

## LAPACK: Bunch-Kaufman algorithm (implementational challenges)

#### 1. pivot selection

- two reduction operations 2nd column unknown till run-time and anywhere in trailing submatrix.
- ► additional run-time dependency → global synchronization with a dynamic scheduler.
- symmetric storage
  - $\rightarrow$  irregular (additional) dependency/memory access.
- 2. symmetric swap (both columns and rows swapped)
  - ► two columns of length n are swapped ↔ only triangular part is stored and updated

#### symmetric storage

- irregular memory access
- row and col dependencies (swapped at once).





글 🕨 🔸 글 🕨

difficult to develop a scalable implementation

fork-join paradigm of LAPACK  $\rightarrow$  panel becomes bottleneck.

## column-wise Aasen's algorithm:

Aasen's idea: reduction to tridiagonal T,

$$PAP^T = LTL^T = LH.$$

using auxiriary Hessenberg matrix  $H = TL^T$  and left-looking algorithm. For each *j*-th column of A,

1. compute *j*-th column  $\mathbf{h}_i$  of *H* (three-term)

$$h_{i,j} = t_{i,i-1} \ell_{j,i-1}^T + t_{i,i} \ell_{j,i}^T + t_{i,i+1} \ell_{j,i+1}^T$$
 for  $i = 1, 2, \dots, j$ .



## column-wise Aasen's algorithm:

Assen's idea: reduction to tridiagonal T, using auxiriary Hessenberg matrix  $H = TL^T$  and left-looking algorithm;

$$PAP^T = LTL^T = LH.$$

For each j-th column of A,

2. compute next column  $\ell_{j+1}$  of L and  $h_{j+1,j}$  (update+factor, just like LU)

$$\ell_{(j+1):n,j+1}h_{j+1,j} = \mathbf{a}_{(j+1):n,j} - \sum_{k=1}^{j} \ell_{(j+1):n,k}h_{k,j}.$$

- for numerical stablity, picks largest element as a pivot !!



A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< ≣ >

## column-wise Aasen's algorithm:

For each *j*-th column of A,

- 3. symmetrically pivot both rows and columns of  $A_{j+1:n,j+1:n}$  (and rows of  $L_{j+1:n,1:j}$ ).
- 4. extract  $t_{j+1,j}$  from  $h_{j+1,j}$   $(t_{j+1,j} = h_{j+1,j}\ell_{j,j}^{-T})$ .

Left-looking Aasen's algorithm:

Advantages:

- $\rightarrow$  guarantees stability through a simple pivoting (just like LU).
- $\rightarrow$  updates only  $\mathbf{a}_{j+1:n,j}$ , performing total of  $\frac{1}{3}n^3$  flops (same as Bunch-Kauffman, and half of the right-looking version, Parlett-Reid).

#### Challenges:

- $\rightarrow$  exhibits limited parallelism (only one column  $\mathbf{a}_j$  is updated at each step).
- $\rightarrow$  introduces a dependency (all the pivots must be applied to  $\mathbf{a}_i$  before updating it).

(日) (同) (E) (E) (E)

## blocked Aasen's algorithm:

#### Replace element-wise operations with block-wise operations: T is now banded.

- compute the j-th block column H<sub>i</sub> (three-term)
  - for stable factorization, symmetry of  $T_{j,j}$  must be maintained through symmetric solve
- 2. compute the (j + 1)-th column  $L_{j+1}$  (panel factorization, tall-skiny LU)

$$L_{(j+1):m,j+1}H_{j+1,j} = (A_{(j+1):n,j} - \sum_{k=1}^{j} L_{(j+1):n,k}H_{k,j})P^{(j+1)}.$$



- 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □

, acpenas enty en parei, and can ase any commanication averang

3. pivot L<sub>j+1:n,1:j</sub> and A<sub>j+1:n,j+1:n</sub> (symmetric pivoting)

4. extract 
$$T_{j+1,j}$$
 from  $H_{j+1,j}$   $(T_{j+1,j} = H_{j+1,j}L_{j,j}^{-T})$ 

#### Comparing blocked Aasen's and Bunch-Kaufman algorithms

| algorithm (factorization) | flops                         | backward<br>stable | \$misses                   | algorithm/implementation      |
|---------------------------|-------------------------------|--------------------|----------------------------|-------------------------------|
| Bunch-Kaufman ( $LDL^T$ ) | $\frac{1}{3}n^3 + O(n^2)$     | conditional        | $O(\frac{n^3}{BM/n})$      | right-look, column-wise panel |
| blocked Aasen $(LBL^T)$   | $\tfrac{1}{3}n^3 + O(n^2n_b)$ | conditional        | $O(\frac{n^3}{B\sqrt{M}})$ | left-look, TSLU panel         |

about the same number of flops but with less "communication"  $\rightarrow$  implemented in <code>PLASMA</code> (synchronization-avoiding)

・ロン ・回 と ・ ヨ と ・ ヨ と

## LU factorizations in PLASMA:



- several LU algorithms are available
  - recursive partial, tournament, incremental, random-butterfly, no-pivoting

A survery of recent parallel Gaussian elimination

Donfack, JDon, Faverge, Gates, Kurzak, Luszek, IY.

イロト イヨト イヨト イヨト

3

reank-revealing pivoting
 LU factorization with panel rank reveling pivoting
 Khabou, JDem, Grigori, Gu

## Improving performance of blocked Aasen's:

Initial performance was not ideal:



- EzTrace on 24 core AMD Opteron ( $n=5000, n_b=100$ ) -



*j*-th step performs reductions (left-looking)

$$\mathbf{a}_{i,j} := \mathbf{a}_{i,j} - \sum_{k=1}^{j-1} \ell_{i,k} h_{k,j}$$
 for  $i = j, j+1, \dots, n_t$ .

∢ ≣⇒

## Initial performance of blocked Aasen's:

use workspaces to perform binary-reduction:

$$w_1 = \sum_{k=1}^h \ell_{i,k} h_{k,j}$$
  $w_1 = w_1 + w_2$ 

$$w_2 = \sum_{k=h+1}^{2h} \ell_{i,k} h_{k,j}$$



- breaks a reduction operation into independent tasks
- starts accumulating updates before destination block a<sub>i,j</sub> is ready

a few other techniques (e.g., symmetric pivoting) described in the paper.

## Current performance of blocked Aasen's:

strong-scaling on eight 6-core 2.8MHz AMD Opteron (n=45K).



< ≣ >

æ

On 6 and 48 cores, blocked Aasen with recursive-panel obtains

- about 83% and 73% of RBT Gflop/s
- speedups of about 1.6 and 1.4 over recursive LU.

Block Aasen with tournament pivoting was slightly slower
 difficult to overlap with left-looking update

## Current performance of blocked Aasen's:

blocked Aasen's computes  $PAP^{T} = LTL^{T}$ , where T is banded.



< ≣⇒

Image: A matrix

æ

Solution time does not scale as well as factorization time
 - about 80 - 90% of solution time spent in banded solver GBSV of LAPACK

## Numerical behavior of blocked Aasen's with partial pivoting LU:



イロン イヨン イヨン イヨン

- Residual norms increase slightly (proportinally) with the block size.
  - seems to be due to the growth in  $\max_{i,j}(|L||T||L|^T)_{i,j}$ .

## Numerical behavior of blocked Aasen's with partial pivoting LU:



relative residual norm =  $\|b - Ax\|/(n\epsilon\|b\| + \|A\|\|x\|)$ 

blocked Aasen obtained quite stable/robust performance

- lost a couple of digits compared to LAPACK (proportional to block size)
- was able to factorize "hard" matrix, where RBT failed

 iterative refinements would lower the residual norms of RBT (if the factorization is succesful).

## Numerical behavior of blocked Aasen's with tournament pivoting LU:



relative residual norm =  $\|b - Ax\|/(n\epsilon\|b\| + \|A\|\|x\|)$ 

イロト イヨト イヨト イヨト

æ

for some matrices, blocked Aasen became unstable with tournament pivoting

- is due to low-rank/singular off-diagonal blocks (CALU panel lead to large growth-factor)
- may be fixed using rank-revealing pivoting

## Summary:

- blocked Aasen with a potential of being scalable and numerically stable.
- nice joint research between applied math and computer science
   looking for applications.
- dynamic scheduler QUARK to speedup an efficient implementation/prototyping.

## **Current studies**:

- other pivoting strategies (e.g., rank-revealing) for panel factorization.
- more performance profiling (e.g., "communication" or "energy" costs).
- larger-scale experiments (distributed-memory system with PaRSEC or QUARKd).
  - more scalable banded solver.
- more theoretial (stablity, etc.) understanding.

## Thank you.

個 ト く ヨ ト く ヨ ト