
Implementing a Blocked Aasen’s Algorithm with
a Dynamic Schedular on Multicore Architectures

Grey Ballard, Dulceneia Becker, James Demmel, Jack Dongarra,
Alex Druinsky, Inon Peled, Oded Schwartz, Sivan Toledo, Ichitaro Yamazaki

University of Tennessee, Knoxville, USA
Tel-Aviv University, Israel

University of California, Berkeley, USA

International Parallel & Distributed Processing Symposium (IPDPS)
Boston, Massachusetts, 05/23/2013

Implementing Blocked Aasen’s on Multicore 1/25

Communication-avoiding, direct linear algebra

I gaps between arithmetic and communication costs is increasing

time
flop

� 1
bandwidth

� latency

→ computation-bound algorithm on a current machine could become

communication-bound on a next machine.

I reduce runtime (or energy) by avoiding communication.
- new algorithm with new numerical properties and bounds.

CPU

Memory

Cache

Memory

Memory Memory

Memory

CPU CPU

CPUCPU

Implementing Blocked Aasen’s on Multicore 2/25

PLASMA: tiled-algorithm with DAG based dynamic scheduler

I tiled algorithm: consists of tasks on tiles

- tile = block stored in contiguous memory

- fine-grained parallelism and cache friendly.

I QUARK: QUeing And Runtime for Kernels

- run a “sequential” code in parallel on a multicore

- schedule task as soon as all dependencies are satisfied

→ synchronization avoiding

Cholesky factorization with QUARK
for (k = 0; k ¡ A.mt; k++) {

QUARK dpotrf(A(k, k)) (factor diagonal)

for (m = k+1; m < A.mt; m++) (compute off-diagonal)

QUARK dtrsm(A(k, k), A(m, k));

for (m = k+1; m < A.mt; m++) { (update trailing submatrix)

QUARK dsyrk(A(m, k), A(m, m));
for (n = k+1; n < m; n++)

QUARK dgemm(A(m, k), A(n, k), A(m, n));
}

}

Specifying dependencies with QUARK
void QUARK dtrsm(double *L, double *B) { (compute B := L−1B)

QUARK Insert Task(
sizeof(double)*nb*nb, L, INPUT,
sizeof(double)*nb*nb, B, INOUT);

}

1:1 POTRF

TRSM TRSM2:2

SYRK GEMM SYRK3:3

POTRF

TRSM

SYRK

4:1

POTRF

5:1

6:1

7:1

Implementing Blocked Aasen’s on Multicore 3/25

Problem description: direct linear algebra

I setup: given a matrix A that is

dense (aij 6= 0), symmetric (A = AT), and indefinite (x∗Ax > 0 > y∗Ay).

I objective: compute a permutation P for a “stable” factorization of A,

PAPT = LBLT ,

P

P
T

where L is unit-lower triangular and B is banded (on a shared-memory machine).

I motivation: used for solving
Ax = b.

I needed in many scientific and engineering simulations:

- discretized Maxwell equations with BEM, optimization problems for structural, acoustics, or
electromagnetic physics, augmented linear least-squares problem, and etc. etc..

Implementing Blocked Aasen’s on Multicore 4/25

pivoting strategies for stable factorization of a dense symmetric indefinite matrix

backward

Year factorization (authors) flops, n3

3
compare stable $misses algorithm/implementation

1970 LTLT (Parlett-Reid) 2 O(n2) conditional O(n
3

B
) column-wise, right-look

1971 LDLT (Bunch-Parlett) 1 O(n3) stable O(n
3

B
) column-wise, right-look

1971 LTLT (Aasen) X 1 O(n2) conditional O(n
3

B
) column-wise, left-look PR

1977 LDLT (Bunch-Kaufman) X 1 O(n2) conditional O(n3

BM/n
) left-look panel, right-look

submatririx-update, LAPACK

1998 LTLT (Ashcraft-Grimes-Lewis) 1 O(n3) stable O(n
3

B
) fast BP

1998 LDLT (Ashcraft-Grimes-Lewis) 1 O(n3) stable O(n
3

B
) stable BK (Rook pivot)

LAPACK

2010 LTLT (Rozloznik-Shklarski-ST) 1 + 1
nb

O(n2) conditional O(n3

BM/n
) PR on panel, Aasen to update

2012 LBLT (AD,IP,ST,GB,JDem,OS) X 1 O(n2) conditional O(n3

B
√

M
) blocked Aasen

2012 RBT (Baboulin,DB,JDon) X 1 0 probablistic O(n3
√

M
) right-look, tiled

PLASMA

Difficult to develop an efficient/scalable implementation that both

I takes advantage of symmetry and

I guarantees numerical stability through pivoting.

Implementing Blocked Aasen’s on Multicore 5/25

Outline:

1. algorithms

I Bunch-Kaufman (LAPACK)

I blocked Aasen

2. tiled implementation with a dynamic scheduler (QUARK/PLASMA)

3. performance and numerical results

4. final remarks

Implementing Blocked Aasen’s on Multicore 6/25

LAPACK: partitioned factorization

right-looking update (LAPACK Bunch-Kaufman)

2. Trailing
 Update

1. Panel
 Factorization

left-looking update (PLASMA blocked Aasen)

2. Panel
 Factorization

1. Panel
 Update

- high parallelism
- poor locality for write

- limited parallelism
- good locality for write

Implementing Blocked Aasen’s on Multicore 7/25

LAPACK: Bunch-Kaufman algorithm to pick j-th pivot

1. i := argmax{|aj :n,j |}, γj = |ai,j |
2. if γj == 0 then (aj :n,j = 0)
3. break (nothing to do)
4. else if |aj,j | ≥ αγj then
5. pivot aj,j
6. else

7. k := argmax{|aj :n,i |}, γi = |ak,i |
8. if |aj,j | ≥ αγj (γj/γi)
9. pivot aj,j
10. else if |ai,i | ≥ αγi then
11. pivot ai,i
12. else

13 pivot

(
aj,j aj,i
ai,j ai,i

)
14. end if

13.end if

look for a large diagonal relative to its off-diagonals.

accept pivot aj,j if large enough
compared with ai,j= maxr 6=j ar,j

aij

jj
a

Implementing Blocked Aasen’s on Multicore 8/25

LAPACK: Bunch-Kaufman algorithm to pick j-th pivot

1. i := argmax{|aj :n,j |}, γj = |ai,j |
2. if γj == 0 then (aj :n,j = 0)
3. break (nothing to do)
4. else if |aj,j | ≥ αγj then
5. pivot aj,j
6. else

7. k := argmax{|aj :n,i |}, γi = |ak,i |
8. if |aj,j | ≥ αγj (γj/γr)
9. pivot aj,j
10. else if |ai,i | ≥ αγi then
11. pivot ai,i
12. else

13 pivot

(
aj,j aj,i
ai,j ai,i

)
14. end if

13.end if

look for a large diagonal relative to its off-diagonals.

accept pivot ai,i if large enough
compared with ak,i= maxr 6=j,r 6=i ar,i

aii

aki

ija

Implementing Blocked Aasen’s on Multicore 9/25

LAPACK: Bunch-Kaufman algorithm to pick j-th pivot

1. i := argmax{|aj :n,j |}, γj = |ai,j |
2. if γj == 0 then (aj :n,j = 0)
3. break (nothing to do)
4. else if |aj,j | ≥ αγj then
5. pivot aj,j
6. else

7. k := argmax{|aj :n,i |}, γi = |ak,i |
8. if |aj,j | ≥ αγj (γj/γr)
9. pivot aj,j
10. else if |ai,i | ≥ αγi then
11. pivot ai,i
12. else

13 pivot

(
aj,j aj,i
ai,j ai,i

)
14. end if

13.end if

look for a large diagonal relative to its off-diagonals.

form 2-by-2 pivot if both
aj,j and ai,i were too small

aii

a jj

- compute PAPT = LDLT , where

I D is block-diagonal with 1-by-1 or 2-by-2
diagonal blocks.

- is normwise backward stable (conditionally).

Implementing Blocked Aasen’s on Multicore 10/25

LAPACK: Bunch-Kaufman algorithm (implementational challenges)

1. pivot selection

I two reduction operations
2nd column unknown till run-time and

anywhere in trailing submatrix.

I additional run-time dependency
→ global synchronization with a dynamic scheduler.

I symmetric storage
→ irregular (additional) dependency/memory access.

2. symmetric swap (both columns and rows swapped)

I two columns of length n are swapped
↔ only triangular part is stored and updated

I symmetric storage
- irregular memory access
- row and col dependencies (swapped at once).

difficult to develop a scalable implementation
fork-join paradigm of LAPACK→ panel becomes bottleneck.

Implementing Blocked Aasen’s on Multicore 11/25

column-wise Aasen’s algorithm:

Aasen’s idea: reduction to tridiagonal T ,

PAPT = LTLT = LH.

using auxiriary Hessenberg matrix H = TLT and left-looking algorithm.

For each j-th column of A,

1. compute j-th column hj of H (three-term)

hi,j = ti,i−1`
T
j,i−1 + ti,i `

T
j,i + ti,i+1`

T
j,i+1 for i = 1, 2, . . . , j .

T L
T

=

Hj−th j−thj−th...1st 2nd

`j,j tj,j `
T
j,j = aj,j − `j,j tj,j−1`

T
j,j−1 −

j−1∑
k=1

`j,khk,j

Implementing Blocked Aasen’s on Multicore 12/25

column-wise Aasen’s algorithm:

Aasen’s idea: reduction to tridiagonal T , using auxiriary Hessenberg matrix H = TLT

and left-looking algorithm;
PAPT = LTLT = LH.

For each j-th column of A,

2. compute next column `j+1 of L and hj+1,j (update+factor, just like LU)

`(j+1):n,j+1hj+1,j = a(j+1):n,j −
j∑

k=1

`(j+1):n,khk,j .

- for numerical stablity, picks largest element as a pivot!!

HL

=

Aj−th

j−th j−th

Implementing Blocked Aasen’s on Multicore 13/25

column-wise Aasen’s algorithm:

For each j-th column of A,

3. symmetrically pivot both rows and columns of Aj+1:n,j+1:n (and rows of Lj+1:n,1:j).

4. extract tj+1,j from hj+1,j (tj+1,j = hj+1,j `
−T
j,j).

Left-looking Aasen’s algorithm:
Advantages:
→ guarantees stability through a simple pivoting (just like LU).

→ updates only aj+1:n,j , performing total of 1
3
n3 flops

(same as Bunch-Kauffman, and half of the right-looking version, Parlett-Reid).

Challenges:
→ exhibits limited parallelism (only one column aj is updated at each step).

→ introduces a dependency (all the pivots must be applied to aj before updating it).

Implementing Blocked Aasen’s on Multicore 14/25

blocked Aasen’s algorithm:

Replace element-wise operations with block-wise operations: T is now banded.

1. compute the j-th block column Hj (three-term)
- for stable factorization, symmetry of Tj,j must be maintained through symmetric solve

2. compute the (j + 1)-th column Lj+1 (panel factorization, tall-skiny LU)

L(j+1):m,j+1Hj+1,j = (A(j+1):n,j −
j∑

k=1

L(j+1):n,kHk,j)P
(j+1)

.

L j+1:m,1:j H

−

A

=

Lj+1:m,j+1 j+1,jH j+1:m,jj+1:m,j

→ depends only on panel, and can use any “communication-avoiding” LU.

3. pivot Lj+1:n,1:j and Aj+1:n,j+1:n (symmetric pivoting)

4. extract Tj+1,j from Hj+1,j (Tj+1,j = Hj+1,jL
−T
j,j)

Implementing Blocked Aasen’s on Multicore 15/25

Comparing blocked Aasen’s and Bunch-Kaufman algorithms

backward
algorithm (factorization) flops stable $misses algorithm/implementation

Bunch-Kaufman (LDLT) 1
3
n3 + O(n2) conditional O(n3

BM/n
) right-look, column-wise panel

blocked Aasen (LBLT) 1
3
n3 + O(n2nb) conditional O(n3

B
√

M
) left-look, TSLU panel

about the same number of flops but with less “communication”

→ implemented in PLASMA (synchronization-avoiding)

Implementing Blocked Aasen’s on Multicore 16/25

LU factorizations in PLASMA:

2K 4K 6K 8K 10K 14K 18K 22K 26K 30K

20

40

60

80

100

120

140

160

180

200

220

240

260

280

Matrix dimension (n=m)

G
fl
o

p
/s

16 core Intel SandyBridge

mkl

no−pivoting

incremental

partial

tournament

rank−revealing

RBT

I several LU algorithms are available

- recursive partial, tournament, incremental,

random-butterfly, no-pivoting

A survery of recent parallel Gaussian elimination

Donfack, JDon, Faverge, Gates, Kurzak, Luszek, IY.

- reank-revealing pivoting

LU factorization with panel rank reveling pivoting

Khabou, JDem, Grigori, Gu

Implementing Blocked Aasen’s on Multicore 17/25

Improving performance of blocked Aasen’s:

Initial performance was not ideal:

- EzTrace on 24 core AMD Opteron (n = 5000, nb = 100) -

j-th step performs reductions (left-looking)

ai,j := ai,j −
j−1∑
k=1

`i,khk,j for i = j , j + 1, . . . , nt .

Implementing Blocked Aasen’s on Multicore 18/25

Initial performance of blocked Aasen’s:

use workspaces to perform binary-reduction:

w1 =
∑h

k=1 `i,khk,j w1 = w1 + w2

w2 =
∑2h

k=h+1 `i,khk,j
...

...

I breaks a reduction operation into independent tasks

I starts accumulating updates before destination block ai,j is ready

a few other techniques (e.g., symmetric pivoting) described in the paper.

Implementing Blocked Aasen’s on Multicore 19/25

Current performance of blocked Aasen’s:

strong-scaling on eight 6-core 2.8MHz AMD Opteron (n=45K).

6 12 24 48
0

50

100

150

200

250

Number of threads

e
ff

e
c
ti
v
e

 G
fl
o

p
/s

RBT
Aasen−recLU
Aasen−CALU
recursive LU
MKL

I On 6 and 48 cores, blocked Aasen with recursive-panel obtains

- about 83% and 73% of RBT Gflop/s

- speedups of about 1.6 and 1.4 over recursive LU.

I Block Aasen with tournament pivoting was slightly slower
- difficult to overlap with left-looking update

Implementing Blocked Aasen’s on Multicore 20/25

Current performance of blocked Aasen’s:

blocked Aasen’s computes PAPT = LTLT , where T is banded.

10000 15000 20000 25000 30000 35000 40000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Matrix size, n

S
o

lu
ti
o

n
 t

im
e

 /
 F

a
c
to

ri
z
a

ti
o

n
 t

im
e

48 threads

12 threads

3 threads

I Solution time does not scale as well as factorization time
- about 80− 90% of solution time spent in banded solver GBSV of LAPACK

Implementing Blocked Aasen’s on Multicore 21/25

Numerical behavior of blocked Aasen’s with partial pivoting LU:

200 400 600 800 1000 1200 1400 1600 1800 2000

10
−12

10
−11

10
−10

Matrix dimension

R
e

s
id

u
a

l
n

o
rm

,
||
A

x
−

b
||

∞

Random matrix

Aasen(n
b
=200)

Aasen(n
b
=100)

Aasen(n
b
=50)

I Residual norms increase slightly (proportinally) with the block size.

- seems to be due to the growth in maxi,j (|L||T ||L|T)i,j .

Implementing Blocked Aasen’s on Multicore 22/25

Numerical behavior of blocked Aasen’s with partial pivoting LU:

1000 1500 2000 2500 3000 3500 4000 4500 5000
10

−3

10
−2

10
−1

10
0

10
1

10
2

Matrix dimension

R
e
la

ti
v
e
 r

e
s
id

u
a
l
n
o
rm

Random matrix

RBT
Aasen(n

b
=10)

Aasen(n
b
=50)

Aasen(n
b
=100)

Aasen(n
b
=200)

LAPACK

1000 1500 2000 2500 3000 3500 4000 4500 5000
10

−3

10
−2

10
−1

10
0

10
1

10
2

Matrix dimension

R
e
la

ti
v
e
 r

e
s
id

u
a
l
n
o
rm

RIS matrix

Aasen(n
b
=10)

Aasen(n
b
=50)

Aasen(n
b
=100)

Aasen(n
b
=200)

LAPACK

relative residual norm = ‖b − Ax‖/(nε‖b‖ + ‖A‖‖x‖)

I blocked Aasen obtained quite stable/robust performance
- lost a couple of digits compared to LAPACK (proportional to block size)

- was able to factorize “hard” matrix, where RBT failed

I iterative refinements would lower the residual norms of RBT
(if the factorization is succesful).

Implementing Blocked Aasen’s on Multicore 23/25

Numerical behavior of blocked Aasen’s with tournament pivoting LU:

1000 1500 2000 2500 3000 3500 4000 4500 5000

10
−2

10
0

10
2

10
4

Matrix dimension

R
e
la

ti
v
e
 r

e
s
id

u
a
l
n
o
rm

Random matrix

RBT
Aasen(n

b
=10)

Aasen(n
b
=50)

Aasen(n
b
=100)

Aasen(n
b
=200)

LAPACK

1000 1500 2000 2500 3000 3500 4000 4500 5000

10
−2

10
0

10
2

10
4

Matrix dimension

R
e
la

ti
v
e
 r

e
s
id

u
a
l
n
o
rm

RIS matrix

Aasen(n
b
=10)

Aasen(n
b
=50)

Aasen(n
b
=100)

Aasen(n
b
=200)

LAPACK

relative residual norm = ‖b − Ax‖/(nε‖b‖ + ‖A‖‖x‖)

I for some matrices, blocked Aasen became unstable with tournament pivoting
- is due to low-rank/singular off-diagonal blocks (CALU panel lead to large growth-factor)

- may be fixed using rank-revealing pivoting

Implementing Blocked Aasen’s on Multicore 24/25

Summary:

I blocked Aasen with a potential of being scalable and numerically stable.

I nice joint research between applied math and computer science
- looking for applications.

I dynamic scheduler QUARK to speedup an efficient implementation/prototyping.

Current studies:

I other pivoting strategies (e.g., rank-revealing) for panel factorization.

I more performance profiling (e.g., “communication” or “energy” costs).

I larger-scale experiments (distributed-memory system with PaRSEC or QUARKd).

- more scalable banded solver.

I more theoretial (stablity, etc.) understanding.

Thank you.

Implementing Blocked Aasen’s on Multicore 25/25

