
Static-scheduling and hybrid-programming
in SuperLU DIST on multicore cluster systems

Ichitaro Yamazaki
University of Tennessee, Knoxville

Xiaoye Sherry Li
Lawrence Berkeley National Laboratory

MS49: Sparse Linear Solvers on Many-core Architectures
SIAM PP: Savannah, 02/17/2012

I. Yamazaki and X. Li 1/22 SuperLU DIST on multicore clusters

SuperLU DIST: direct solver for general sparse linear systems
on a distributed memory system

I first release in 1999

I each compute node with 1+ cores and UMA.

I capable of factorizing matrices with millions of unknowns
from real applications.

I used in large-scale simulations: iterative/hybrid solvers

. quantum mechanics [SC’01]:
low-order uncoupled systems

. fusion energy (M3D-C1, PPPL):
2D slices of 3D torus

PDSLin: hybrid linear solver
. domain decomposition
. inetrior subdomain solver
. studied for accelerator modeling

(Omega3P, SLAC)

I. Yamazaki and X. Li 2/22 SuperLU DIST on multicore clusters

Our testbeds at NERSC

Cray-XE6 (Hopper):

I 6,384 nodes (peak 1.28Pflop/s),
No. 8 on TOP500.

I two 12-core AMD MagnyCours (two
six-core Bulldozer) 2.1GHz processors
+ 32GB of memory per node.

I Cray Gemini Network in a 3D torus.

IBM iDatPlex (Caver)

I 1,202 nodes (peak 0.11Pflops/sec),
max. 64 nodes for a parallel job.

I two quad-core Intel Nehalem 2.7GHz
processors + ˜20GB of memory per
node.

I 4x QDR InfiniBand in a 2D mesh.

I. Yamazaki and X. Li 3/22 SuperLU DIST on multicore clusters

SuperLU DIST version 2.5 (released Nov. 2010) on Cray-XE6

8 32 128 512 2048
0

50

100

150

200

250

300

Number of cores

F
a
c
to

ri
z
a
ti
o
n
 t
im

e
 (

s
)

(a) accelerator (sym), n = 2.7M, fill-ratio= 12

32 128 512 2048
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Number of cores

F
a
c
to

ri
z
a
ti
o
n
 t
im

e
(s

)

(b) DNA (unsym), n = 445K, fill-ratio= 609

I SuperLU DIST often does not scale to thousands of cores.

I Why, and can we improve its performance?

I. Yamazaki and X. Li 4/22 SuperLU DIST on multicore clusters

Outline:

I Introduction to SuperLU DIST

I Static scheduling scheme
I exploit more parallelism and reduce idle time.
I obtain speedups of upto 2.6 on upto 2048 cores.

I Hybrid programming paradigm
I reduce memory overhead and obtain similar parallel efficiency.
I utilize more cores per node and reduce factorization time.

I. Yamazaki and X. Li 5/22 SuperLU DIST on multicore clusters

SuperLU DIST: steps to solution

Compute factorization in three-stages:

1. Matrix preprocessing:
- static pivoting/scaling/permutation to

improve numerical stability and to
preseve sparsity

2. Symbolic factorization:
- computation of e-tree/structure of LU

and static comm./comp. schedulings
- supernodal (6-50 cols) for efficient

dense block operations

3. Numerical factorization:
- fan-out (right-looking, outer-product)
- 2D cyclic MPI grid

0

3 4

0 1 2

3 4 5 3

0 2 0 1

3 4 5 3 4 5

0 1 2 0 1 2 0

1

1

2

2

5

0 1

4

0 1 2 0

3 4 5

2

5

0

0

3

3

3

Compute solution with forward and backward substitutions.

I. Yamazaki and X. Li 6/22 SuperLU DIST on multicore clusters

SuperLU DIST: steps to solution

Compute factorization in three-stages:

1. Matrix preprocessing:
- static pivoting/scaling/permutation to

improve numerical stability and to
preseve sparsity

2. Symbolic factorization:
- computation of e-tree/structure of LU

and static comm./comp. scheduling
- supernodal (6-50 cols) for efficient

dense block operations

3. Numerical factorization: ← dominate
- fan-out (right-looking, outer-product)
- 2D cyclic MPI grid

0

3 4

0 1 2

3 4 5 3

0 2 0 1

3 4 5 3 4 5

0 1 2 0 1 2 0

1

1

2

2

5

0 1

4

0 1 2 0

3 4 5

2

5

0

0

3

3

3

Compute solution with forward and backward substitutions.

I. Yamazaki and X. Li 7/22 SuperLU DIST on multicore clusters

SuperLU DIST: numerical factorization

fan-out (right-looking) factorization
for j = 1, 2, . . . , ns

panel factorization (column and row)
factor Aj,j and

isend to PC (k) and PR(k)
wait for Aj,j and

factor A(j+1):ns ,j and send to PR(:)
wait for Aj,j and
factor Aj,(j+1):ns and send to PC (:)

trailing matrix update
update A(j+1):ns ,(j+1):ns

end for

0

3 4

0 1 2

3 4 5 3

0 2 0 1

3 4 5 3 4 5

0 1 2 0 1 2 0

1

1

2

2

5

0 1

4

0 1 2 0

3 4 5

2

5

0

0

3

3

3

I high parallelism and good load-balance for trailing matrix updates,
where most of computation time is spent.

I. Yamazaki and X. Li 8/22 SuperLU DIST on multicore clusters

SuperLU DIST: numerical factorization

fan-out (right-looking) factorization
for j = 1, 2, . . . , ns

panel factorization (column and row)
factor Aj,j and

isend to PC (k) and PR(k)
wait for Aj,j and

factor A(j+1):ns ,j and send to PR(:)
wait for Aj,j and
factor Aj,(j+1):ns and send to PC (:)

trailing matrix update
update A(j+1):ns ,(j+1):ns

end for

0

3 4

0 1 2

3 4 5 3

0 2 0 1

3 4 5 3 4 5

0 1 2 0 1 2 0

1

1

2

2

5

0 1

4

0 1 2 0

3 4 5

2

5

0

0

3

3

3

I sequential flow and limited parallelism at panel factorization

I poor scheduling causes processors being idle.

I. Yamazaki and X. Li 9/22 SuperLU DIST on multicore clusters

SuperLU DIST version 2.5 (released Nov. 2010) on Cray-XE6

8 32 128 512 2048
0

5

10

15

20

25

30

35

40

45

50

Number of cores

F
a
c
to

ri
z
a
ti
o
n
 t
im

e
(s

)

Factorization

Communication

(c) accelerator (sym), n = 2.7M, fill-ratio= 12

32 128 512 2048
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Number of cores

F
a
c
to

ri
z
a
ti
o
n
 t
im

e
(s

)

Factorization

Communication

(d) DNA, n = 445K, fill-ratio= 609

I synchronization dominates on a large number of cores
(e.g., up to 96% of factorization time).

I. Yamazaki and X. Li 10/22 SuperLU DIST on multicore clusters

Outline:

I Introduction to SuperLU DIST

I Static scheduling scheme
I exploit more parallelism and reduce idle time.
I obtain speedups of upto 2.6 on upto 2048 cores.

I Hybrid programming paradigm
I reduce memory overhead and obtain similar parallel efficiency.
I utilize more cores per node and reduce factorization time.

I. Yamazaki and X. Li 11/22 SuperLU DIST on multicore clusters

SuperLU DIST: numerical factorization

fan-out (right-looking) factorization
for j = 1, 2, . . . , ns

panel factorization (column and row)
factor Aj,j and

isend to PC (k) and PR(k)
wait for Aj,j and

factor A(j+1):ns ,j and send to PR(:)
wait for Aj,j and
factor Aj,(j+1):ns and send to PC (:)

trailing matrix update
update A(j+1):ns ,(j+1):ns

end for

0

3 4

0 1 2

3 4 5 3

0 2 0 1

3 4 5 3 4 5

0 1 2 0 1 2 0

1

1

2

2

5

0 1

4

0 1 2 0

3 4 5

2

5

0

0

3

3

3

I synchronization dominates on a large number of cores.

I processors in PC (k) and PR(k) wait for diagonal factorization.
I all the processors wait for the panel factorization.

I due to sparsity, many panels won’t be updated by remaining panels
and are ready to be factorized.

I. Yamazaki and X. Li 12/22 SuperLU DIST on multicore clusters

Look-ahead in SuperLU DIST with a fixed window size nw

At each j-th step; factorize all
“ready” panels in the window.

- reduce idle time of cores
- overlap comm. and comp.
- exploit more parallelism

for j = 1, 2, . . . , ns
look-ahead row factorization
for k = j + 1, j + 2, . . . , j + nw do

if Uk,k has arrived on PR(k) then
factor Ak,(k+1):ns and isend to PC (:)

synchronizations
wait for Uj,j and factor Aj,j+1:ns if needed
wait for L:,j and Uj,:

look-ahead column factorization
for k = j + 1, j + 2, . . . , j + nw do

update A:,k

if possible then
factor Ak:ns ,k and isend to PR(:)

trailing matrix update
update remaining A(j+nw +1):ns ,(j+nw +1):ns

end for

0

3 4

0 1 2

3 4 5 3

0 2 0 1

3 4 5 3 4 5

0 1 2 0 1 2 0

1

1

2

2

5

0 1

4

0 1 2 0

3 4 5

2

5

0

0

3

3

3

look−ahead window

I factorization time is
reduced only by 10%

I ready-for-factorize panels
are not in window.

I performance depends on
ordering of panels.

I. Yamazaki and X. Li 13/22 SuperLU DIST on multicore clusters

Keeping track of dependencies in SuperLU DIST:

Directed acyclic graph (DAG)

9 10 11

7 4 63

1

2

58

- node for each panel factor. task
- edge (k , j) for dependency k → j
- source/leaf = ready for factorization

Unsymmetric case: symmetrically-pruned DAG

I identify smallest sk such that U(k , sk) and L(sk , k) are the first
symmetrically matched non-empty block for each k.

I add an edge (k , j) for all the non-empty U(k , j) for j ≤ sk .

I add an edge (k , i) for all the non-empty L(i , k) for j ≤ sk .

Symmetric case: elimination-tree (etree)

I. Yamazaki and X. Li 14/22 SuperLU DIST on multicore clusters

Symbolic factorization of SuperLU DIST:

I order columns in postorder of etree
(of |A|T + |A| for unsymmetric A)

- larger supernodes
- same structures/dependencies of LU

I setups data structures as supernodes are
identified (postorder).

I uses same postordering during
numerical factorization.
- data locality

I limit number of ready panels in window
- look-ahead only subtree

11

1

2 3

4

5 6

7

9 8 10

I. Yamazaki and X. Li 15/22 SuperLU DIST on multicore clusters

Static scheduling in SuperLU DIST:

Symmetric case:

I keep track of dependencies using etree

I schedule tasks from leaves to root with
higher-priority on the nodes further away
from the root (bottom-up topological ordering)

Unsymmetric case:

I use etree of |A|T + |A|
I over-estimate dependencies for

unsymmetric factorization

11

1

6 2

7

8 3

4

9

510

I. Yamazaki and X. Li 16/22 SuperLU DIST on multicore clusters

Static scheduling in SuperLU DIST:

Unsymmetric case:

I symmetrically-pruned DAG to track both row and column
dependencies.

9 10 11

7 4 63

1

2

58

I “source” nodes represent ready-to-be-factorized columns.

I statically schedule tasks from sources to sinks with
higher-priority on the nodes further away from a sink.

I. Yamazaki and X. Li 17/22 SuperLU DIST on multicore clusters

SuperLU DIST version 2.5 and 3.0 on Cray-XE6

8 32 128 512 2048
0

5

10

15

20

25

30

35

40

45

50

Number of cores

F
a
c
to

ri
z
a
ti
o
n
/C

o
m

m
u
n
ic

a
ti
o
n
 t
im

e
 (

s
)

version 2.5

version 3.0

(e) accelerator (sym), n = 2.7M, fill-ratio= 12

32 128 512 2048
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Number of cores

F
a
c
to

ri
z
a
ti
o
n
/C

o
m

m
u
n
ic

a
ti
o
n
 t
im

e
 (

s
)

version 2.5

version 3.0

(f) DNA (unsym), n = 445K, fill-ratio= 608

I idle time was significantly reduced (speedups of up to 2.6).
I To further improve the performance,

I more sophisticated scheduling schemes
I hybrid programming paradigms

I. Yamazaki and X. Li 18/22 SuperLU DIST on multicore clusters

Outline:

I Introduction to SuperLU DIST

I Static scheduling scheme
I exploit more parallelism and reduce idle time.
I obtain speedups of upto 2.6 on upto 2048 cores.

I Hybrid programming paradigm
I reduce memory overhead and obtain similar parallel efficiency.
I utilize more cores per node and reduce factorization time.

I. Yamazaki and X. Li 19/22 SuperLU DIST on multicore clusters

Hybrid programming in SuperLU DIST

I Computation is dominated by trailing matrix updates, where
each MPI process updates independent supernodal blocks
→ use OpenMP threads to update these blocks

0 0 0

000

0 0 0

1 1 1

1 1 1

11 1

2 2 2

22222

2 2 2

3 3 3

3333

3 3 3

1 1 1

1 1 1

111

0 0 0

000

0 0 0

2 2 2

222

2 2 2

3 3 3

333

3 3 3

(g) 1D block if enough columns

0 0 0

000

0 0 0

1 1 1

1 1 1

11 1

2 2 2

22222

2 2 2

3 3 3

3333

3 3 3

1 1 1

1 1 1

111

0 0 0

000

0 0 0

2 2 2

222

2 2 2

3 3 3

333

3 3 3

(h) 2D cyclic otherwise

I. Yamazaki and X. Li 20/22 SuperLU DIST on multicore clusters

Hybrid programming on top of SuperLU DIST version 3.0

factorization times on 16 nodes of Cray-XE6.

16 32 64 128 256
0

20

40

60

80

100

120

Number of cores

F
a
c
to

ri
z
a
ti
o
n
 t
im

e
 (

s
)

1 thread

2 threads

4 threads

(i) accelerator (sym), n = 2.7M, fill-ratio= 12

16 32 64 128 256
0

500

1000

1500

2000

2500

3000

3500

4000

Number of cores

F
a
c
to

ri
z
a
ti
o
n
 t
im

e
 (

s
)

1 thread

2 threads

4 threads

(j) DNA (unsym), n = 445K, fill-ratio= 608

I hybrid pradigm utilizes more cores on a node
avoiding MPI overheads (memory/time).

I. Yamazaki and X. Li 21/22 SuperLU DIST on multicore clusters

Final remarks

I static scheduling reduced idle time with speedups of upto 2.6
I available in version 3.0:

http://crd-legacy.lbl.gov/~xiaoye/SuperLU.

I hybrid programming reduced MPI overheads, utilized more
cores/node, and obtained speedups on same node count.

I more results are available in IPDPS’12 proceedings.

Thank you!!

I. Yamazaki and X. Li 22/22 SuperLU DIST on multicore clusters

http://crd-legacy.lbl.gov/~xiaoye/SuperLU

